

OS/390 eNetwork Communications Server ÉÂÔ

IP IMS Sockets Guide
Version 2 Release 5

 SC31-8519-00

OS/390 eNetwork Communications Server ÉÂÔ

IP IMS Sockets Guide
Version 2 Release 5

 SC31-8519-00

 Note:

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Notices”
on page 243.

First Edition (March 1998)

This edition applies to OS/390 V2R5 (program number 5647-A01).

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM representative or write to
the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address comments to:

 IBM Corporation
 Department CGMD

P.O. Box 12195
Research Triangle Park, North Carolina 27709

 U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada): 1-800-227-5088

Internet e-mail: usib2hpd@vnet.ibm.com

World Wide Web: http://www.s390.ibm.com/os390

IBMLink: CIBMORCF at RALVM13

IBM Mail Exchange: USIB2HPD at IBMMAIL

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xiii
Who Should Use This Book . xiii
How to Use This Book . xiii

Where to Find Related Information on the Internet xiv
How to Contact IBM Service . xiv

Summary of Changes . xv
SC31-7186-03: TCP/IP Version 3 Release 2 for MVS xv

New Information . xv
Changed Information . xv

SC31-7186-02: TCP/IP Version 3 Release 2 for MVS xv
New Information . xvi
Changed Information . xvi

SC31-7186-01: OS/390 V2R5 Release 1 - TCP/IP Version 3 Release 1 for
MVS . xvi

Changed Information . xvii
SC31-7186-00: TCP/IP Version 3 Release 1 for MVS xvii

Part 1. IMS Overview . 1

Chapter 1. Using TCP/IP with IMS . 3
The Role of IMS TCP/IP . 3
Introduction to IMS TCP/IP . 4
IMS TCP/IP Feature Components . 4

The IMS TCP/IP OTMA Connection Server . 4
The IMS Listener . 5
The IMS Assist Module . 5
The MVS TCP/IP Socket Application Programming Interface (Sockets

Extended) . 5

Chapter 2. Introduction to TCP/IP for IMS . 7
What IMS TCP/IP Does . 7

Using IMS with SNA or TCP/IP . 8
 . 8

TCP/IP Internets . 8
Mainframe Interactive Processing . 8
Client/Server Processing . 8
TCP, UDP, and IP . 9
The Socket API . 9

Programming with Sockets . 10
 Socket types . 10
Addressing TCP/IP hosts . 11

A Typical Client Server Program Flow Chart . 13
Concurrent and Iterative Servers . 14

The Basic Socket Calls . 14
Server TCP/IP calls . 15

Socket . 15
Bind . 16
Listen . 16

 Copyright IBM Corp. 1994, 1997 iii

Accept . 16
GIVESOCKET and TAKESOCKET . 17
Read and Write . 17

Client TCP/IP Calls . 17
The Socket Call . 17
The Connect Call . 18
Read/Write Calls — the Conversation . 18
 The Close Call . 18

 Other Socket Calls . 19
The SELECT Call . 19
IOCTL and FCNTL Calls . 21
GIVESOCKET and TAKESOCKET Calls . 22

What You Need to Run IMS TCP/IP . 23
TCP/IP for MVS . 23

A Summary of What IMS TCP/IP Provides . 23

Part 2. Using the IMS OTMA Connection Server . 27

Chapter 3. Using IMS TCP/IP OTMA Connection from TCP/IP Clients . . 29
IMS TCP/IP OTMA Connection Server Overview 29
How the Connection Is Established . 30

Requesting an IMS Transactions . 30
Verifying the Transaction Request . 32
Scheduling the Transaction . 34

IMS OTMA Connection Security Exit . 34

Chapter 4. IMS OTMA Connection Server Sample Programs 37
TPIIMSDP — Triple-Purpose IMS Server Program 37
TPIOTMAC — IMS OTMA Listener COBOL Client Program 44
TPICPART — IMS OTMA Listener C Client Program 55
IMSLSECX — IMS BMP and OTMA Listener Security Exit 62

Part 3. Using The IMS Listener . 71

Chapter 5. Principles of Operation . 77
Overview . 77

The Role of the IMS Listener . 77
The Role of the IMS Assist Module . 77

Client/Server Logic Flow . 78
How the Connection is Established . 78
How the Server Exchanges Data with the Client 80
How the IMS Listener Manages Multiple Connection Requests 84
Use of the IMS Message Queue . 84
Call Sequence for the IMS Listener . 85
Application Design Considerations . 86
Programs That Are Not Started by the IMS Listener 86
When the Client is an IMS MPP . 86
Abend Processing . 86
Implicit-Mode Support for ROLB Processing 87
Restrictions . 87

Chapter 6. How to Write an IMS TCP/IP Client Program 89

iv IP IMS Sockets Guide

Client Program Logic Flow — General . 89
Explicit-Mode Client Program Logic Flow . 89

Explicit-Mode Client Call Sequence . 90
Explicit-Mode Application Data . 90

Implicit-Mode Client Logic Flow . 91
Implicit-Mode Client Call Sequence . 91
Implicit Mode Application Data Stream . 92
Implicit-Mode Application Data . 92

IMS TCP/IP Message Segment Formats . 93
Transaction-Request Message Segment (Client to Listener) 94
Request-Status Message Segment . 94
Complete-Status Message Segment . 95
End-of-Message Segment (EOM) . 95

PL/I Coding . 95

Chapter 7. How to Write an IMS TCP/IP Server Program 97
Server Program Logic Flow —General . 97
Explicit-Mode Server Program Logic Flow . 97

Explicit-Mode Call Sequence . 97
Explicit-Mode Application Data . 98
Transaction-Initiation Message Segment . 99
Program Design Considerations . 100
I/O PCB — Explicit-Mode Server . 100
Explicit-Mode Server — PL/I Programming Considerations 100

Implicit-Mode Server Program Logic Flow . 100
Implicit-Mode Server Call Sequence . 101
Implicit-Mode Application Data . 101
Programming to the Assist Module Interface 102
Implicit-Mode Server PL/I Programming Considerations 103
Implicit-Mode Server C Language Programming Considerations 103
I/O PCB Implicit-Mode Server . 103

Chapter 8. How to Customize and Operate the IMS Listener 105
How to Start the IMS Listener . 105
How to Stop the IMS Listener . 106
The IMS Listener Configuration File . 106

TCPIP Statement . 106
LISTENER Statement . 107
TRANSACTION Statement . 107

The IMS Listener Security Exit . 108
TCP/IP for MVS Definitions . 109

The hlq.PROFILE.TCPIP Data Set . 109
The hlq.TCPIP.DATA Data Set . 110

Chapter 9. CALL Instruction Application Programming Interface (API) . 113
Call Formats . 113

COBOL language call format . 113
Assembler language call format . 113
PL/I language call format . 114

Programming Language Conversions . 114
Error Messages and Return Codes . 115
CALL Instructions for Assembler, PL/.I, and COBOL Programs 115

ACCEPT . 115
BIND . 117

 Contents v

CLOSE . 118
CONNECT . 119
FCNTL . 121
GETCLIENTID . 122
GETHOSTBYADDR . 123
GETHOSTBYNAME . 125
GETHOSTID . 127
GETHOSTNAME . 127
GETIBMOPT . 128
GETPEERNAME . 130
GETSOCKNAME . 131
GETSOCKOPT . 132
GIVESOCKET . 135
INITAPI . 137
IOCTL . 139
LISTEN . 142
READ . 143
READV . 144
RECV . 146
RECVFROM . 147
RECVMSG . 149
SELECT . 152
SELECTEX . 156
SEND . 158
SENDMSG . 159
SENDTO . 162
SETSOCKOPT . 164
SHUTDOWN . 166
SOCKET . 167
TAKESOCKET . 168
TERMAPI . 169
WRITE . 170
WRITEV . 171

Data Translation Programs for the Socket Call Interface 172
Data Translation . 172
Bit String Processing . 172
EZACIC04 . 172
EZACIC05 . 173
EZACIC06 . 173
EZACIC08 . 175

Chapter 10. IMS Listener Samples . 179
IMS TCP/IP Control Statements . 179

JCL for Linking an Implicit-Mode Server . 179
JCL for Linking an Explicit-Mode Server . 179
JCL for Starting a Message Processing Region 180
JCL for Linking the IMS Listener . 180
Listener IMS Definitions . 182

Sample Program Explicit-Mode . 182
Program Flow . 182
Sample Explicit-Mode Client Program (C Language) 183
Sample Explicit-Mode Server Program (Assembler Language) 185

Sample Program Implicit-Mode . 191
Program flow . 191

vi IP IMS Sockets Guide

Sample Implicit-Mode Client Program (C Language) 192
Sample Implicit-Mode Server Program (Assembler Language) 195

Sample Program—IMS MPP Client . 199
Program Flow . 199
Sample Client Program for Non-IMS server 199
Sample Server Program for IMS MPP Client 208

Part 4. Appendixes . 219

Appendix A. Return Codes . 221
Sockets Extended Return Codes . 229

Appendix B. How to Read a Syntax Diagram 239
Symbols and Punctuation . 239
Parameters . 239
Syntax Examples . 239

Appendix C. Notices . 243
Trademarks . 244

Glossary . 245

Bibliography . 247
eNetwork Communications Server for OS/390 V2R5 Publications 247

Softcopy Information . 247
Marketing Information . 247
Planning . 247
Installation, Resource Definition, Configuration, and Tuning 247
Operation . 248
Customization . 248
Writing Application Programs . 249
Diagnosis . 250
Messages and Codes . 250
APPC Application Suite . 251

Multiprotocol Transport Networking (MPTN) Architecture Publications 251
OS/390 Publications . 251

Index . 253

 Contents vii

viii IP IMS Sockets Guide

 Figures

1. The Use of TCP/IP with IMS . 7
2. TCP/IP Protocols when compared to the OSI Model and SNA 9
3. A Typical Client Server Session . 13
4. An Iterative Server . 14
5. A Concurrent Server . 14
6. The SELECT Call . 19
7. How User Applications Access TCP/IP Networks with IMS TCP/IP 24
8. IMS TCP/IP Message Flow for Transaction Initiation 79
9. IMS TCP/IP Message Flow for Explicit-Mode Input/Output 81

10. IMS TCP/IP Message Flow for Implicit Mode Input/Output 83
11. Sample JCL for Starting the IMS Listener 105
12. Definition of the TCP/IP Profile . 110
13. The TCPIPJOBNAME Parameter in the DATA Data Set 111
14. HOSTENT Structure Returned by the GETHOSTBYADDR Call 124
15. HOSTENT Structure Returned by the GETHOSTYBYNAME Call 126
16. Interface Request Structure (IFREQ) for the IOCTL Call 140
17. COBOL II Example for SIOCGIFCONF 142

 Copyright IBM Corp. 1994, 1997 ix

x IP IMS Sockets Guide

 Tables

1. First Fullword Passed in a Bit String in Select 20
2. Second Fullword Passed in a Bit String in Select 21
3. IOCTL call arguments . 141
4. System Error Return Codes . 221
5. Sockets Extended Return Codes . 229

 Copyright IBM Corp. 1994, 1997 xi

xii IP IMS Sockets Guide

About This Book

This book describes how to use IBM TCP/IP Version 3 Release 2 for MVS with
IMS/ESA, Version 4 and above. It describes the call interface and the supporting
functions.

This book addresses the following topics:

¹ IMS client/server application design
¹ IMS OTMA Connection Server
¹ The IMS Listener
¹ The IMS Assist function
¹ The IMS socket calls, including call syntax conventions

TCP/IP Version 3 Release 2 for MVS is an integral part of the OS/390 V2R5 family
of products. For an overview and mapping of the documentation available for
OS/390 V2R5, see the OS/390 Information Roadmap.

Who Should Use This Book
This book is intended for programmers who have some familiarity with IMS Trans-
action Manager and TCP/IP for MVS, and who need to develop IMS TCP/IP
client/server applications. For more information about how programmers with dif-
ferent levels of experience should use this book see How to Use This Book.

How to Use This Book
To ensure proper interprogram communication, the two halves of a client/server
program must be developed together. At a minimum, they must agree on protocol
and data formats. To complicate matters (particularly in the case of a UNIX**
processor talking to an IMS mainframe), the technology differences are so exten-
sive that the two halves will often be coded by different individuals — one a TCP/IP
socket programmer; the other, an IMS programmer.

This book has been designed to be read by users with a variety of backgrounds
and needs:

¹ Application designers need to know how the various components of IMS
TCP/IP interact to provide program-to-program communication. These readers
should read Chapter 5, “Principles of Operation” on page 77.

¹ Experienced TCP/IP socket programmers need to know the protocol and
message formats necessary to establish communication with the IMS Listener
and with the server program. These readers should read Chapter 6, “How to
Write an IMS TCP/IP Client Program” on page 89 and Chapter 9, “CALL
Instruction Application Programming Interface (API)” on page 113.

¹ Experienced IMS application programmers will be familiar with IMS input/output
calls (GU, GN, ISRT). These programmers have two choices:

– Programmers with IMS experience and little or no TCP/IP programming
experience will probably wish to use the IMS Assist module, which accepts
standard IMS I/O calls, and converts them to equivalent socket calls. They
should read the chapter on implicit-mode programming.

 Copyright IBM Corp. 1994, 1997 xiii

– IMS programmers with socket experience can chose to code native C lan-
guage or use the Sockets Extended API. These programmers should read
the chapter on explicit-mode programming and Chapter 9, “CALL Instruc-
tion Application Programming Interface (API)” on page 113.

¹ IMS system programmers and communication programmers are responsible for
the IMS system itself. These readers should read Chapter 8, “How to Cus-
tomize and Operate the IMS Listener” on page 105.

Where to Find Related Information on the Internet
You may find the following information helpful.

Note: Any pointers in this publication to websites are provided for convenience
only and do not in any manner serve as an endorsement of these websites.

You can read more about VTAM, TCP/IP, OS/390, and IBM on these Web pages:

Home Page Uniform Resource Locator (URL)
VTAM http://www.networking.ibm.com/vta/vtaprod.html
TCP/IP http://www.networking.ibm.com/tcm/tcmprod.html
OS/390 http://www.s390.ibm.com/os390/
IBM eNetwork Communications Server

http://www.software.ibm.com/enetwork/commserver.html
IBM http://www.ibm.com/

For definitions of the terms and abbreviations used in our books, you can view or
download the latest IBM Networking Softcopy Glossary at the following URL:

http://www.networking.ibm.com/nsg/nsgmain.htm

How to Contact IBM Service
For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

xiv IP IMS Sockets Guide

Summary of Changes

SC31-7186-03: TCP/IP Version 3 Release 2 for MVS
This is the fourth edition of this book. This book supports TCP/IP Version 3
Release 2 for MVS and the OS/390 V2R5 family of products.

The updates contained in this edition are effective only if the latest level of mainte-
nance has been applied. New and changed information is indicated by a revision
bar (|).

 New Information
The following enhancements are new for this revision:

¹ The IMS TCP/IP Open Transaction Manager Access Connection (OTMA)
server is a new function that allows TCP/IP clients to connect directly to IMS.
Using the IMS TCP/IP OTMA Connection server with the EZAIMSO0 exit allows
a remote client to connect directly to IMS. The server is available from the IMS
Web page and the EZAIMSO0 exit is available as PTF UQ03104. See
Chapter 3, “Using IMS TCP/IP OTMA Connection from TCP/IP Clients” on
page 29 for a description of the IMS TCP/IP OTMA Connection server.

¹ “JCL for Linking the IMS Listener” on page 180 is a new section that includes
two sample JCL programs for linking the IMS Listener.

¹ Return code 1044 describes the EIBMINVALIDTCB message.

 Changed Information
The following information has changed for this revision:

¹ The description of return code 10332 no longer describes SELECTEX.

¹ The RETCODE value for the WRITE function, which is described in Chapter 9,
“CALL Instruction Application Programming Interface (API)” on page 113.

¹ This book has been divided into parts to reflect the use of the IMS Listener and
the IMS TCP/IP OTMA Connection Server:

– Part 1 is a general introduction section.

– Part 2 describes how to use the IMS OTMA TCP/IP Connection server. It
also includes sample programs.

– Part 3 describes the use of the traditional IMS Listener and IMS Assist
Module.

SC31-7186-02: TCP/IP Version 3 Release 2 for MVS
This is the third edition of this book. This book supports TCP/IP Version 3 Release
2 for MVS and the OS/390 V2R5 family of products.

The updates contained in this edition are effective only if the latest level of mainte-
nance has been applied. New and changed information is indicated by a revision
bar (|).

 Copyright IBM Corp. 1994, 1997 xv

 New Information
The following enhancements are new for this revision:

¹ Improved C Sockets and Sockets Extended application program interfaces
(APIs) (also referred to as High-Performance Native Sockets, or HPNS): The
Sockets Extended APIs, which are the Macro and Call Instruction interfaces, no
longer use the inter-user communication vehicle (IUCV) address space. This
change improves performance and reduces CPU cycles in an MVS host trans-
porting data with TCP/IP. Applications written on previous versions of TCP/IP
for MVS can run unchanged.

¹ New calls for the Call Instruction interface:

– The GETIBMOPT call returns the number of TCP/IP images installed on a
given MVS system and their status, versions, and names.

– The READV call reads data on a socket and stores it in a set of buffers.

– The RECVMSG call receives messages on a socket and stores them in an
array of message headers.

– The SELECTEX call monitors a set of sockets, a time value, and an ECB
or ECB list. It completes when either one of the sockets has activity, the
time value expires, or an ECB is posted.

– The SENDMSG call sends messages on a socket passed from an array of
messages.

– The WRITEV call writes data on a socket into a set of buffers.

 Changed Information
¹ Chapter 2, Introduction to TCP/IP for IMS has been expanded to include a

more complete overview of sockets programming and the client/server environ-
ment.

¹ The sample JCL for starting the IMS Listener has been moved from the
Appendix to Chapter 8, “How to Customize and Operate the IMS Listener” on
page 105.

Various minor editorial and technical updates have been applied to this edition.

SC31-7186-01: OS/390 V2R5 Release 1 - TCP/IP Version 3 Release 1 for
MVS

This is the second edition of this book. This book supports TCP/IP Version 3
Release 2 for MVS and the OS/390 V2R5 family of products.

The updates contained in this edition are effective only if the latest level of mainte-
nance has been applied. New and changed information is indicated by a revision
bar (|).

xvi IP IMS Sockets Guide

 Changed Information
Various minor editorial and technical updates have been applied to this edition.

SC31-7186-00: TCP/IP Version 3 Release 1 for MVS
This is a new book for TCP/IP Version 3 Release 1 for MVS. This book describes
how to use IMS TCP/IP.

 Summary of Changes xvii

xviii IP IMS Sockets Guide

 Part 1. IMS Overview

Chapter 1. Using TCP/IP with IMS . 3
The Role of IMS TCP/IP . 3
Introduction to IMS TCP/IP . 4
IMS TCP/IP Feature Components . 4

The IMS TCP/IP OTMA Connection Server . 4
The IMS Listener . 5
The IMS Assist Module . 5
The MVS TCP/IP Socket Application Programming Interface (Sockets

Extended) . 5

Chapter 2. Introduction to TCP/IP for IMS . 7
What IMS TCP/IP Does . 7

Using IMS with SNA or TCP/IP . 8
 . 8

TCP/IP Internets . 8
Mainframe Interactive Processing . 8
Client/Server Processing . 8
TCP, UDP, and IP . 9
The Socket API . 9

Programming with Sockets . 10
 Socket types . 10
Addressing TCP/IP hosts . 11

Address Families . 11
Socket Addresses . 11
Internet (IP) Addresses . 12
Ports . 12
Domain Names . 12
Network Byte Order . 12

A Typical Client Server Program Flow Chart . 13
Concurrent and Iterative Servers . 14

The Basic Socket Calls . 14
Server TCP/IP calls . 15

Socket . 15
Bind . 16
Listen . 16
Accept . 16
GIVESOCKET and TAKESOCKET . 17
Read and Write . 17

Client TCP/IP Calls . 17
The Socket Call . 17
The Connect Call . 18
Read/Write Calls — the Conversation . 18
 The Close Call . 18

 Other Socket Calls . 19
The SELECT Call . 19
IOCTL and FCNTL Calls . 21
GIVESOCKET and TAKESOCKET Calls . 22

Summary . 23
What You Need to Run IMS TCP/IP . 23

TCP/IP for MVS . 23

 Copyright IBM Corp. 1994, 1997 1

A Summary of What IMS TCP/IP Provides . 23

2 IP IMS Sockets Guide

Chapter 1. Using TCP/IP with IMS

The purpose of this chapter is to introduce you to the IMS TCP/IP feature. The
chapter includes a discussion of the kind of applications for which IMS TCP/IP is
intended and an overview of its components.

The Role of IMS TCP/IP
The IMS/ESA database and transaction management facility is used throughout the
world. For many enterprises, IMS is the data processing backbone, supporting large
personnel and financial databases, manufacturing control files, and inventory man-
agement facilities. IMS backup and recovery features protect valuable data assets,
and the IMS Transaction Manager provides high-speed access for thousands of
concurrent users.

Traditionally, many IMS users have used 3270-type protocol to communicate with
the IMS Transaction Manager. In that environment, all of the processing, including
display screen formatting, is done by the IMS mainframe. During the decade of the
1980s, users began to move some of the processing outboard into personal com-
puters. However, these PCs were typically connected to IMS via SNA 3270 pro-
tocol.

During that period, although most IMS users were focused on 3270 PC emulation,
many non-IMS users were busy building a network based on a different protocol,
called TCP/IP. As this trend developed, the need for an access path between
TCP/IP-communicating devices and the still-indispensable processing power of IMS
became clear. IMS TCP/IP provides that access path. IMS TCP/IP is an optional
feature that can be added to the TCP/IP for MVS product. Its role can be more
easily understood when one distinguishes between traditional 3270 applications (in
which the IMS processor does all the work), and the more complex client/server
applications (in which the application logic is divided between the IMS processor
and another programmable device such as a TCP/IP host).

MVS TCP/IP supports both application types:

¹ When a TCP/IP host needs access to a traditional 3270 Message Format
Service (MFS) application, it does not need to use the IMS TCP/IP feature; it
can connect to IMS directly through Telnet which provides 3270 emulation ser-
vices for TCP/IP-connected clients. Telnet is a part of the base TCP/IP for MVS
product. (See TCP/IP for MVS: User's Guide for more information.)

¹ When a TCP/IP host needs to support a client/server application, it should use
the IMS TCP/IP feature of TCP/IP for MVS. This feature is specifically designed
to support two-way client/server communication between an IMS message
processing program (MPP) and a TCP/IP host.

As used in this book, the term client refers to a program that requests services of
another program. That other program is known as the server. The client is often a
UNIX-based program; however, DOS-, OS/2*-, CMS-, and MVS-based programs
can also act as clients. Similarly, as used in this book, the term server refers to a
program that is often an IMS MPP; however, the server can be a TCP/IP host,
responding to an IMS MPP client.

 Copyright IBM Corp. 1994, 1997 3

Introduction to IMS TCP/IP
For peer-to-peer applications that use SNA communication facilities, remote pro-
grammable devices communicate with IMS through the advanced program-to-
program communication (APPC) API. For peer-to-peer applications that use TCP/IP
communication facilities, remote programmable devices communicate with IMS
through facilities provided by IMS TCP/IP.

The IMS TCP/IP feature provides the services necessary to establish and maintain
connection between a TCP/IP-connected host and an IMS MPP. In addition, it
allows client/server applications to be developed using the TCP/IP socket applica-
tion programming interface.

In operation, when a TCP/IP client requires program-to-program communication
with an IMS server message processing program (MPP), the client sends its
request to TCP/IP for MVS. TCP/IP passes the request to the IMS OTMA Con-
nection server, or passes the request on to the IMS Listener, which schedules the
requested MPP and transfers control of the connection to it. Once control of the
connection is passed, data transfer between the server and the remote client is
performed using socket calls.

IMS TCP/IP Feature Components
The IMS TCP/IP feature consists of the following components:

¹ The IMS TCP/IP OTMA Connection server, which is similar in function to the
IMS Listener in providing connectivity

¹ The IMS Listener, which provides connectivity

¹ The IMS Assist module, which simplifies TCP/IP communications programming

¹ The Sockets Extended application programming interface (API) 1

The IMS TCP/IP OTMA Connection Server
The new IMS TCP/IP OTMA Connection server enables remote clients to connect
to IMS to perform IMS transactions. The IMS Listener is still available and sup-
ported, but IMS TCP/IP OTMA Connection server is the recommended way for
remote clients to connect to IMS.

Note: You should continue to use the IMS Listener for explicit-mode transactions.

The IMS TCP/IP OTMA Connection server is a feature of the host web services
(HWS) component and is available with IMS Version 5.1. The IMS TCP/IP OTMA
Connection server supports an exit routine, EZAIMSO0, that is used to interface
between TCP/IP clients and existing IMS application programs.

Unlike the IMS Listener, the IMS TCP/IP OTMA Connection server maintains con-
nection until the entire connection is complete. The IMS TCP/IP OTMA Connection
server is capable of maintaining a variable number of concurrent connection
requests.

1 Shipped with the TCP/IP V3R2 for MVS base product

4 IP IMS Sockets Guide

The IMS Listener
The purpose of the Listener is to provide clients with a single point of contact to
IMS. The IMS Listener is a batch program (BMP) that waits for connection requests
from remote TCP/IP-connected hosts. When a request arrives, the Listener sched-
ules the appropriate transaction (the server) and passes a TCP/IP socket (repres-
enting the connection) to that server.

The IMS Listener maintains connection requests until the requested MPP takes
control of the socket. The Listener is capable of maintaining a variable number of
concurrent connection requests.

The IMS Assist Module
The Assist module is a subroutine that is a part of the server program. Its use is
optional. Its purpose is to allow the use of conventional IMS calls for TCP/IP com-
munication between client and server. In use, the Assist module intercepts the IMS
calls and issues the corresponding socket commands; consequently, IMS MPP pro-
grammers who use the IMS Assist module require no TCP/IP skills.

Programs that do use the Assist module are known as implicit-mode programs
because the socket calls are issued implicitly by the Assist module.

Programs that do not use the Assist module issue socket calls directly. Such pro-
grams are known as explicit-mode programs because of their explicit use of the
calls.

The MVS TCP/IP Socket Application Programming Interface (Sockets
Extended)

The socket call interface provides a set of programming calls that can be used in
an IMS message processing program to conduct a conversation with a peer
program in another TCP/IP processor. The interface is derived from BSD 4.3
socket, a commonly used communications programming interface in the TCP/IP
environment. Socket calls include connection, initiation, and termination functions,
as well as basic read/write communication. The MVS TCP/IP socket call interface
makes it possible to issue socket calls from programs written in COBOL, PL/I, and
assembler language.

The IMS socket calls are a subset of the TCP/IP socket calls. They are designed to
be used in programs written in other than C language; hence the term Sockets
Extended.

 Chapter 1. Using TCP/IP with IMS 5

6 IP IMS Sockets Guide

Chapter 2. Introduction to TCP/IP for IMS

This chapter presents an overview of TCP/IP as it is used with MVS.

What IMS TCP/IP Does
The IMS TCP/IP feature allows remote users to access IMS client/server applica-
tions over TCP/IP internets. It is a feature of TCP/IP for MVS. Figure 1 shows how
IMS TCP/IP gives a variety of remote users peer-to-peer communication with IMS
applications. You can choose either the IMS OTMA Connection server or the IMS
Listener for remote clients to complete transaction requests to IMS.

It is important to understand that IMS TCP/IP is primarily intended to support peer-
to-peer applications, as opposed to the traditional IMS mainframe interactive appli-
cations in which the IMS system contained all programmable logic, and the remote
terminal was often referred to as a “dumb” terminal. To connect a TCP/IP host to
one of those traditional applications, you should first consider the use of Telnet, a
function of TCP/IP for MVS which provides 3270 emulation. With Telnet, you can
access existing 3270-style Message Format Services applications without modifica-
tion. You should consider IMS TCP/IP only when developing new peer-to-peer
applications in which both ends of the connection are programmable.

System/390

IMS region

IMS
BMP

IMS
OTMA

Connection
Server

IMS
Listener

TCP/IP

for

MVS

LAN

UNIX

OS/2

other
networks

VAX

Figure 1. The Use of TCP/IP with IMS

IMS TCP/IP provides a variant of the BSD 4.3 Socket interface, which is widely
used in TCP/IP networks and is based on the UNIX** system and other operating
systems. The socket interface consists of a set of calls that IMS application pro-
grams can use to set up connections, send and receive data, and perform general
communication control functions. The programs can be written in COBOL, PL/I,
assembler language, or C.

 Copyright IBM Corp. 1994, 1997 7

Using IMS with SNA or TCP/IP

IMS is an online transaction processing system. This means that application pro-
grams using IMS can handle large numbers of data transactions from large net-
works of computers and terminals.

Communication throughout these networks has often been based on the Systems
Network Architecture (SNA) family of protocols. IMS TCP/IPoffers IMS users an
alternative to SNA — the TCP/IP family of protocols for those users whose native
communications protocol is TCP/IP.

 TCP/IP Internets
This section describes some of the basic ideas behind the TCP/IP family of proto-
cols.

Like SNA, TCP/IP is a set of communication protocols used between physically
separated computer systems. Unlike SNA and most other protocols, TCP/IP is not
designed for a particular hardware technology. TCP/IP can be implemented on a
wide variety of physical networks, and is specially designed for communicating
between systems on different physical networks (local and wide area). This is
called internetworking.

Mainframe Interactive Processing
TCP/IP for MVS supports traditional 3270 mainframe interactive (MFI) applications
with an emulator function called Telnet (TN3270). For these applications, all
program logic runs in the mainframe, and the remote host uses only that amount of
logic necessary to provide basic communications services. Thus, if your require-
ment is simply to provide access from a remote TCP/IP host to existing IMS MFI
applications, you should consider Telnet rather than IMS TCP/IP as the communi-
cations vehicle. Telnet 3270-emulation functions allow your TCP/IP host to commu-
nicate with traditional applications without modification.

 Client/Server Processing
TCP/IP also supports client/server processing, where processes are either:

¹ Servers that provide a particular service and respond to requests for that
service

¹ Clients that initiate the requests to the servers

With IMS TCP/IP, remote client systems can initiate communications with IMS and
cause an IMS transaction to start. It is anticipated that this will be the most
common mode of operation. (Alternatively, the remote system can act as a server
with IMS initiating the conversation.)

8 IP IMS Sockets Guide

TCP, UDP, and IP
TCP/IP is a family of protocols that is named after its two most important members.
Figure 2 shows the TCP/IP protocols used by IMS TCP/IP, in terms of the layered
Open Systems Interconnection (OSI) model, which is widely used to describe data
communication systems. For IMS users who might be more accustomed to SNA,
the left side of Figure 2 shows the SNA layers, which correspond very closely to
the OSI layers.

SNA OSI TCP/IP family

Application Application7

Presentation Presentation Application6

Data Flow Data Flow5

Transmission Transmission TCP or UDP
Sockets API

4

Path Control Path Control IP3

Data Link Data Link Data Link2

Physical Physical Physical1

Figure 2. TCP/IP Protocols when compared to the OSI Model and SNA

The protocols implemented by TCP/IP for MVS and used by IMS TCP/IP, are high-
lighted in Figure 2:

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a reli-
able virtual-circuit connection between applications; that is, a connection is
established before data transmission begins. Data is sent without errors or
duplication and is received in the same order as it is sent. No boundaries are
imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides
an unreliable datagram connection between applications (that is, data is trans-
mitted link by link; there is no end-to-end connection). The service provides no
guarantees: data can be lost or duplicated, and datagrams can arrive out of
order.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
datagram service between applications, supporting both TCP and UDP.

The Socket API
The socket API is a collection of socket calls that enable you to perform the fol-
lowing primary communication functions between application programs:

¹ Set up and establish connections to other users on the network
¹ Send and receive data to and from other users
¹ Close down connections

In addition to these basic functions, the API enables you to:

¹ Interrogate the network system to get names and status of relevant resources

 Chapter 2. Introduction to TCP/IP for IMS 9

¹ Perform system and control functions as required

IMS TCP/IP provides two TCP/IP socket application program interfaces (APIs),
similar to those used on UNIX systems. One interfaces to C language programs,
the other to COBOL, PL/I, and System/370* assembler language programs.

¹ C language . Historically, TCP/IP has been associated with the C language and
the UNIX operating system. Textbook descriptions of socket calls are usually
given in C, and most socket programmers are familiar with the C interface to
TCP/IP. For these reasons, TCP/IP for MVS includes a C language API. If you
are writing new TCP/IP applications and are familiar with C language program-
ming, you might prefer to use this interface. See OS/390 eNetwork Communi-
cations Server: IP API Guide for the C language socket calls supported by
MVS TCP/IP.

¹ Sockets Extended API (COBOL, PL/I, Assembler Language) . The Sockets
Extended API (Sockets Extended) is for those who want to write in COBOL,
PL/I, or assembler language, or who have COBOL, PL/I, or assembler lan-
guage programs that need to be modified to run with TCP/IP. The Sockets
Extended API enables you to do this by using CALL statements. If you are
writing new TCP/IP applications in COBOL, PL/I, or assembler language, you
might prefer to use the Sockets Extended API. With this interface, C language
is not required; name Sockets Extended. See Chapter 9, “CALL Instruction
Application Programming Interface (API)” on page 113 for details of this inter-
face.

Programming with Sockets
The original UNIX socket interface was designed to hide the physical details of the
network. It included the concept of a socket, which would represent the connection
to the programmer, yet shield the program (as much as possible) from the details of
communication programming. A socket is an end-point for communication that
can be named and addressed in a network. From an application program per-
spective, a socket is a resource that is allocated by the TCP/IP address space. A
socket is represented to the program by an integer called a socket descriptor.

 Socket types
The MVS socket APIs provide a standard interface to the transport and internet-
work layer interfaces of TCP/IP. They support three socket types: stream,
datagram, and raw. Stream and datagram sockets interface to the transport layer
protocols, and raw sockets interface to the network layer protocols. All three socket
types are discussed here for background purposes.

Stream sockets transmit data between TCP/IP hosts that are already connected to
one another. Data is transmitted in a continuous stream; in other words, there are
no record length or newline character boundaries between data. Communicating
processes 2

must agree on a scheme to ensure that both client and server have received all
data. One way of doing this is for the sending process to send the length of the

2 In TCP/IP terminology, a process is essentially the same as an application program.

10 IP IMS Sockets Guide

data, followed by the data itself. The receiving process reads the length and then
loops, accepting data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a "reliable"
connection-oriented service. In this context, the word reliable means that data is
sent without error or duplication and is received in the same order as it is sent.
Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are
sent as independent packets. The service provides no guarantees; data can be lost
or duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction (currently the default is
8192 and the maximum is 65507). No disassembly and reassembly of packets is
performed by TCP/IP.

The raw socket interface allows direct access to lower layer protocols, such as IP
and Internet Control Message Protocol (ICMP). This interface is often used for
testing new protocol implementations.

Addressing TCP/IP hosts
The following section describes how one TCP/IP host addresses another TCP/IP
host. 3

 Address Families
An address family defines a specific addressing format. Applications that use the
same addressing family have a common scheme for addressing socket end-points.
TCP/IP for IMS supports the AF_INET address family.

 Socket Addresses
A socket address in the AF_INET family comprises 4 fields: the name of the
address family itself (AF_INET), a port, an internet address, and an eight-byte
reserved field. In COBOL, a socket address looks like this:

01 NAME

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP_ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

You will find this structure in every call that addresses another TCP/IP host.

In this structure, FAMILY is a half-word that defines which addressing family is
being used. In IMS, FAMILY is always set to a value of 2, which specifies the
AF_INET internet address family. 4

The PORT field identifies the application port number; it must be specified in
network byte order. The IP_ADDRESS field is the internet address of the network
interface used by the application. It also must be specified in network byte order.
The RESERVED field should be set to all zeros.

3 In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of "mainframe" or large
processor within the TCP/IP definition of the word host.

4 Note that sockets support many address families, but TCP/IP for IMS only supports the internet address family.

 Chapter 2. Introduction to TCP/IP for IMS 11

Internet (IP) Addresses
An internet addresses (otherwise known as an IP address) is a 32-bit field that
represents a network interface. An IP address is commonly represented in dotted
decimal notation such as 129.5.25.1. Every internet address within an administered
AF_INET domain must be unique. A common misunderstanding is that a host must
have only one internet address. In fact, a single host may have several internet
addresses — one for each network interface.

 Ports
A port is a 16-bit integer that defines a specific application, within an IP address, in
which several applications use the same network interface. The port number is a
qualifier that TCP/IP uses to route incoming data to a specific application within an
IP address. Some port numbers are reserved for particular applications and are
called well-known ports, such as Port 23, which is the well-known port for Telnet.

As an example, an MVS system with an IP address of 129.9.12.7 might have IMS
as port 2000, and Telnet as port 23. In this example, a client desiring connection to
IMS would issue a CONNECT call, requesting port 2000 at IP address 129.9.12.7.

Sockets and Ports

Note: It is important to understand the difference between a socket and a port.
TCP/IP defines a port to represent a certain process on a certain machine
(network interface). A port represents the location of one process in a host
that can have many processes. A bound socket represents a specific port
and the IP address of its host.

 Domain Names
Because dotted decimal IP addresses are difficult to remember, TCP/IP also allows
you to represent host interfaces on the network as alphabetic names, such as
Alana.E04.IBM.COM, or CrFre@AOL.COM. Every Domain Name has an equiv-
alent IP address. TCP/IP includes service functions (GETHOSTBYNAME and
GETHOSTBYADDR) that will help you convert from one notation to another.

Network Byte Order
In the open environment of TCP/IP, internet addresses must be defined in terms of
the architecture of the machines. Most machine architectures (like IBM PC's and
mainframes) define the lowest memory address to be the high-order bit, which is
called big endian. However, some architectures define the lowest memory address
to be the low-order bit, which is called little endian.

Network addresses in a given network must all follow a consistent addressing con-
vention. This convention, known as Network Byte Order, defines the bit-order of
network addresses as they pass through the network. The TCP/IP standard
Network Byte Order is big-endian. Since IBM systems are big-endian, the only time
you need to be concerned about Network Byte Order is when a little-endian system
attempts to make contact with an IMS system. In such a case, the burden for con-
version to Network Byte Order is usually on the little-endian program.

Note: The socket interface does not handle application data bit-order differences.
Application writers must handle these bit order differences themselves.

12 IP IMS Sockets Guide

A Typical Client Server Program Flow Chart
Stream-oriented socket programs generally follow a prescribed sequence. See
Figure 3 for a diagram of the logic flow for a typical client and server. As you study
this diagram, keep in mind the fact that a concurrent server typically starts before
the client does, and waits for the client to request connection at step .3/. It then
continues to wait for additional client requests after the client connection is closed.

1 1

4

11 11

2 2

5

5

3

6 6
Read and write data on socket s, using the
send() and recv() calls, until all data has
been exchanged.

Create a stream socket s with the socket()
call.

Create a stream socket s with the socket()
call.

(Optional)
Bind socket s to a local address with the
bind()

Connect socket s to a foreign host with the
connect()

Close socket s and end the TCP/IP session
with the close() call.

Bind socket s to a local address with the
bind()

With the listen() call, alert the TCP/IP
machine of your willingness to accept
connections.

Accept the connection and receive a
second socket, for example ns, with the
accept()

For the server, socket s remains available
to accept new connections. Socket ns is
dedicated to the client.

Read and write data on socket ns, using
the send() and recv() calls, until all
data has been exchanged.

Close socket ns with the close() call.

Accept another connection from a client,
or close the original socket s with the
close()

CLIENT SERVER

Figure 3. A Typical Client Server Session

 Chapter 2. Introduction to TCP/IP for IMS 13

Concurrent and Iterative Servers
An iterative server handles both the connection request and the transaction
involved in the call itself. Iterative servers are fairly simple and are suitable for
transactions that do not last long.

However, if the transaction takes more time, queues can build up quickly. In
Figure 4, once Client A starts a transaction with the server, Client B cannot make a
call until A has finished.

Iterative
Server

Client B

Client A

TCP/IP

Figure 4. An Iterative Server

So, for lengthy transactions, a different sort of server is needed — the concurrent
server, as shown in Figure 5. Here, Client A has already established a connection
with the server, which has then created a child server process to handle the trans-
action. This allows the server to process Client B’s request without waiting for A’s
transaction to complete. More than one child server can be started in this way.

TCP/IP provides a concurrent server program called the IMS Listener . It is
described in Chapter 8, “How to Customize and Operate the IMS Listener” on
page 105.

Concurrent
Server

child
server

process

TCP/IP

Client B

Client A

Figure 5. A Concurrent Server

Figure 3 on page 13 illustrates a concurrent server at work.

The Basic Socket Calls
The following is an overview of the basic socket calls.

The following calls are used by the server:

SOCKET Obtains a socket to read from or write to.

BIND Associates a socket with a port number.

LISTEN Tells TCP/IP that this process is listening for connections on this
socket.

14 IP IMS Sockets Guide

SELECT Waits for activity on a socket.

ACCEPT Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from
the parent server task (Listener) to the child server task (user-written applica-
tion).

GIVESOCKET Gives a socket to a child server task.

TAKESOCKET Accepts a socket from a parent server task.

GETCLIENTID Optionally used by the parent server task to determine its own
address space name (if unknown) prior to issuing the
GIVESOCKET.

The following calls are used by the client:

SOCKET Allocates a socket to read from or write to.

CONNECT Allows a client to open a connection to a server’s port.

 The following calls are used by both the client and the server:

WRITE Sends data to the process on the other host.
READ Receives data from the other host.
CLOSE Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see Chapter 9, “CALL Instruction
Application Programming Interface (API)” on page 113.

Server TCP/IP calls
To understand Socket programming, the client program and the server program
must be considered separately. In this section the call sequence for the server is
described; the next section discusses the typical call sequence for a client. This is
the logical presentation sequence because the server is usually already in exe-
cution before the client is started. The step numbers (such as.5/) in this section
refer to the steps in Figure 3 on page 13.

 Socket
The server must first obtain a socket .1/. This socket provides an end-point to
which clients can connect.

A socket is actually an index into a table of connections in the TCPIP address
space, so TCP/IP usually assigns socket numbers in ascending order. In COBOL,
the programmer uses the SOCKET call to obtain a new socket.

The socket function specifies the address family (AF_INET), the type of socket
(STREAM), and the particular networking protocol (PROTO) to use. (When PROTO
is set to 0, the TCPIP address space automatically uses the appropriate protocol
for the specified socket type). Upon return, the newly allocated socket's descriptor
is returned in RETCODE.

For an example of the SOCKET call, see “SOCKET” on page 167.

 Chapter 2. Introduction to TCP/IP for IMS 15

 Bind
At this point .2/, an entry in the table of communications has been reserved for the
application. However, the socket has no port or IP address associated with it until
the BIND call is issued. The BIND function requires 3 parameters:

¹ The socket descriptor that was just returned by the SOCKET call.
¹ The number of the port on which the server wishes to provide its service
¹ The IP address of the network connection on which the server is listening. If

the application wants to receive connection requests from any network inter-
face, the IP address should be set to zeros.

For an example of the BIND call, see “BIND” on page 117.

 Listen
After the bind, the server has established a specific IP address and port upon
which other TCP/IP hosts can request connection. Now it must notify the TCP/IP
address space that it intends to listen for connections on this socket. The server
does this with the LISTEN.3/ call, which puts the socket into passive open mode.
Passive open mode describes a socket that can accept connection requests, but
cannot be used for communication. A passive open socket is used by a listener
program like the IMS Listener to await connection requests. Sockets that are
directly used for communication between client and server are known as active
open sockets. In passive open mode, the socket is open for client contacts; it also
establishes a backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin
accepting connections. Normally, only the number of requests specified by the
BACKLOG parameter will be queued.

For an example of the LISTEN call, see “LISTEN” on page 142.

 Accept
At this time .5/, the server has obtained a socket, bound the socket to an IP
address and port, and issued a LISTEN to open the socket. The server main task is
now ready for a client to request connection .4/. The ACCEPT call temporarily
blocks further progress. 5

The default mode for Accept is blocking. Accept behavior changes when the socket
is non-blocking. The FCNTL() or IOCTL() calls can be used to disable blocking for
a given socket. When this is done, calls that would normally block continue regard-
less of whether the I/O call has completed. If a socket is set to non-blocking and an
I/O call issued to that socket would otherwise block (because the I/O call has not
completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to
TCP/IP. When the connection is established, the ACCEPT call returns a new
socket descriptor (in RETCODE) that represents the connection with the client.
This is the socket upon which the server subtask communicates with the

5 Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is roughly analogous to
the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a socket is set to block, the calling program
is suspended until the expected event completes.

16 IP IMS Sockets Guide

client . Meanwhile, the original socket (S) is still allocated, bound and ready for use
by the main task to accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly
calling ACCEPT, a concurrent server can establish simultaneous sessions with mul-
tiple clients.

For an example of the ACCEPT call, see “ACCEPT” on page 115.

GIVESOCKET and TAKESOCKET
The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. A server handling more than one client simul-
taneously acts like a dispatcher at a messenger service. A messenger dispatcher
gets telephone calls from people who want items delivered and the dispatcher
sends out messengers to do the work. In a similar manner, the server receives
client requests, and then spawns tasks to handle each client.

In UNIX**-based servers, the fork() system call is used to dispatch a new subtask
after the initial connection has been established. When the fork() command is used,
the new process automatically inherits the socket that is connected to the client.

Because of architectural differences, MVS does not implement the fork() system
call.

Tasks use the GIVESOCKET and TAKESOCKET functions to pass sockets from
parent to child. The task passing the socket uses GIVESOCKET, and the task
receiving the socket uses TAKESOCKET. See “GIVESOCKET and TAKESOCKET
Calls” on page 22 for more information about these calls.

Read and Write
Once a client has been connected with the server, and the socket has been trans-
ferred from the main task (parent) to the subtask (child), the client and server
exchange application data, using various forms of READ/WRITE calls. See
“Read/Write Calls — the Conversation” on page 18 for details about these calls.

Client TCP/IP Calls
The TCP/IP call sequence for a client is simpler than the one for a concurrent
server. A client only has to support one connection and one conversation. A con-
current server obtains a socket upon which it can listen for connection requests,
and then creates a new socket for each new connection.

The Socket Call
In the same manner as the server, the first call .1/ issued by the client is the
SOCKET call. This call causes allocation of the socket on which the client will com-
municate.

CALL 'EZASOKET' USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

See “SOCKET” on page 167 for a sample of the SOCKET call.

 Chapter 2. Introduction to TCP/IP for IMS 17

The Connect Call
Once the SOCKET call has allocated a socket to the client, the client can then
request connection on that socket with the server through use of the CONNECT
call .4/.

The CONNECT call attempts to connect socket descriptor (S) to the server with an
IP address of NAME. The CONNECT call blocks until the connection is accepted
by the server. On successful return, the socket descriptor (S) can be used for com-
munication with the server.

This is essentially the same sequence as that of the server; however, the client
need not issue a BIND command because the port of a client has little significance.
The client need only issue the CONNECT call, which issues an implicit BIND.
When the CONNECT call is used to bind the socket to a port, the port number is
assigned by the system and discarded when the connection is closed. Such a port
is known as an ephemeral port because its life is very short as compared with that
of a concurrent server, whose port remains available for a prolonged time.

See “CONNECT” on page 119 for an example of the CONNECT call.

Read/Write Calls — the Conversation
A variety of I/O calls is available to the programmer. The READ and WRITE,
READV and WRITEV, and SEND.6/ and RECV.6/ calls can be used only on
sockets that are in the connected state. The SENDTO and RECVFROM, and
SENDMSG and RECVMSG calls can be used regardless of whether a connection
exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional fea-
tures of scatter and gather data. Scattered data can be located in multiple data
buffers. The WRITEV and SENDMSG calls gather the scattered data and send it.
The READV and RECVMSG calls receive data and scatter it into multiple buffers.

The WRITE and READ calls specify the socket S on which to communicate, the
address in storage of the buffer that contains, or will contain, the data (BUF), and
the amount of data transferred (NBYTE). The server uses the socket that is
returned from the ACCEPT call.

These functions return the amount of data that was either sent or received.
Because stream sockets send and receive information in streams of data, it can
take more than one call to WRITE or READ to transfer all of the data. It is up to the
client and server to agree on some mechanism of signalling that all of the data has
been transferred.

¹ For an example of the READ call, see “READ” on page 143.

¹ For an example of the WRITE call, see “WRITE” on page 170.

The Close Call
When the conversation is over, both the client and server call CLOSE to end the
connection. The CLOSE call also deallocates the socket, freeing its space in the
table of connections. For an example of the CLOSE call, see “CLOSE” on
page 118.

18 IP IMS Sockets Guide

Other Socket Calls
Several other calls that are often used — particularly in servers — are the SELECT
call, the GIVESOCKET/TAKESOCKET calls, and the IOCTL and FCTL calls. These
calls are discussed next.

The SELECT Call
Applications such as concurrent servers often handle multiple sockets at once. In
such situations, the SELECT call can be used to simplify the determination of which
sockets have data to be read, which are ready for data to be written, and which
have pending exceptional conditions. An example of how the SELECT call is used
can be found in Figure 6.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.

01 MAXSOC PIC 9(8) BINARY VALUE 50.

 01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.

03 TIMEOUT-MILLISEC PIC 9(8) BINARY.

 01 RSNDMASK PIC X(50).

 01 WSNDMASK PIC X(50).

 01 ESNDMASK PIC X(50).

 01 RRETMASK PIC X(50).

 01 WRETMASK PIC X(50).

 01 ERETMASK PIC X(50).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMASK WSNDMASK ESNDMASK

RRETMASK WRETMASK ERETMASK

 ERRNO RETCODE.

Figure 6. The SELECT Call

In this example, the application sends bit sets (the xSNDMASK sets) to indicate
which sockets are to be tested for certain conditions, and receives another set of
bits (the xRETMASK sets) from TCP/IP to indicate which sockets meet the speci-
fied conditions.

The example also indicates a time-out. If the time-out paramater is NULL, this is
the C language API equivalent of a wait forever. (In Sockets Extended, a negative
timeout value is a wait forever.) If the time-out parameter is nonzero, SELECT only
waits the timeout amount of time for at least one socket to become ready on the
indicated conditions. This is useful for applications servicing multiple connections
that cannot afford to wait for data on a single connection. If the xSNDMASK bits
are all zero, SELECT acts as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the
xSNDMASKs) and then wait (block) until one of the specified sockets is ready to be
processed. When the SELECT call returns, the program knows only that some
event has occurred, and it must test a set of bit masks (xRETMASKs) to determine
which of the sockets had the event, and what the event was.

 Chapter 2. Introduction to TCP/IP for IMS 19

To maximize performance, a server should only test those sockets that are active.
The SELECT call allows an application to select which sockets will be tested, and
for what. When the Select call is issued, it blocks until the specified sockets are
ready to be serviced (or, optionally) until a timer expires. When the select call
returns, the program must check to see which sockets require service, and then
process them.

To allow you to test any number of sockets with just one call to SELECT, place the
sockets to test into a bit set, passing the bit set to the select call. A bit set is a
string of bits where each possible member of the set is represented by a 0 or a 1. If
the member’s bit is 0, the member is not to be tested. If the member’s bit is 1, the
member is to be tested. Socket descriptors are actually small integers. If socket 3 is
a member of a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT
function: one bit set for sockets on which to receive data; another for sockets on
which to write data; and any sockets with exception conditions. The SELECT call
tests each selected socket for activity and returns only those sockets that have
completed. On return, if a socket's bit is raised, the socket is ready for reading data
or for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is
accustomed to bit strings that are counted from left to right. Instead, these bit
strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of
fullwords. If the highest socket descriptor you want to test is socket descriptor
number three, you have to pass a 4-byte bit string, because this is the minimum
length. If the highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as

INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in Table 1.

In these examples, we use standard assembler numbering notation; the left-most
bit or byte is relative zero.

If you want to test socket descriptor number 5 for pending read activity, you raise
bit 2 in byte 3 of the first fullword (X'00000020'). If you want to test both socket

Table 1. First Fullword Passed in a Bit String in Select

Socket
Descriptor
Numbers
Represented
by Byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 0 31 30 29 28 27 26 25 24

Byte 1 23 22 21 20 19 18 17 16

Byte 2 15 14 13 12 11 10 9 8

Byte 3 7 6 5 4 3 2 1 0

20 IP IMS Sockets Guide

descriptor 4 and 5, you raise both bit 2 and bit 3 in byte 3 of the first fullword
(X'00000030').

If you want to test socket descriptor number 32, you must pass two fullwords,
where the numbering scheme for the second fullword resembles that of the first.
Socket descriptor number 32 is bit 7 in byte 3 of the second fullword. If you want to
test socket descriptors 5 and 32, you pass two fullwords with the following content:
X'0000002000000001'.

The bits in the second fullword represents the socket descriptor numbers shown in
Table 2.

If you develop your program in COBOL or PL/I, you may find that the EZACIC06
routine, which is provided as part of TCP/IP for MVS, will make it easier for you to
build and test these bit strings. This routine translates between a character string
mask (one byte per socket) and a bit string mask (one bit per socket).

In addition to its function of reporting completion on Read/Write events, the
SELECT call can also be used to determine completion of events associated with
the LISTEN and GIVESOCKET calls.

¹ When a connection request is pending on the socket for which the main
process issued the LISTEN call, it will be reported as a pending read.

¹ When the parent process has issued a GIVESOCKET, and the child process
has taken the socket, the parent's socket descriptor is selected with an excep-
tion condition. The parent process is expected to close the socket descriptor
when this happens.

Table 2. Second Fullword Passed in a Bit String in Select

Socket
Descriptor
Numbers
Represented
by Byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

Byte 5 55 54 53 52 51 50 49 48

Byte 6 47 46 45 44 43 42 41 40

Byte 7 39 38 37 36 35 34 33 32

IOCTL and FCNTL Calls
In addition to SELECT, applications can use the IOCTL or FCNTL calls to help
perform asynchronous (nonblocking) socket operations. An example of the use of
the IOCTL call is shown in “IOCTL” on page 139.

The IOCTL call has many functions; establishing blocking mode is only one of its
functions. The value in COMMAND determines which function IOCTL will perform.
The REQARG of 0 specifies non-blocking (a REQARG of 1 would request that
socket S be set to blocking mode). When this socket is passed as a parameter to a
call that would block (such as RECV when data is not present), the call returns with
an error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode of
the socket to nonblocking allows an application to continue processing without
becoming blocked.

 Chapter 2. Introduction to TCP/IP for IMS 21

GIVESOCKET and TAKESOCKET Calls
The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. Tasks use the GIVESOCKET and
TAKESOCKET functions to pass sockets from parent to child.

For programs using TCP/IP for MVS, each task has its own unique 8-byte name.
The main server task passes three arguments to the GIVESOCKET call:

¹ The socket number it wants to give
¹ Its own name 6

¹ The name of the task to which it wants to give the socket

If the server does not know the name of the subtask that will receive the socket, it
blanks out the name of the subtask. 7

The first subtask calling TAKESOCKET with the server’s unique name receives the
socket.

The subtask that receives the socket must know the main task’s unique name and
the number of the socket that it is to receive. This information must be passed from
main task to subtask in a work area that is common to both tasks.

¹ In IMS, the parent task name and the number of the socket descriptor are
passed from parent (Listener) to child (MPP) through the message queue.

¹ IN CICS, the parent task name and the socket descriptor number are passed
from the parent (Listener) to the transaction program by means of the EXEC
CICS START and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the
main task is not the socket descriptor that the subtask will use. When
TAKESOCKET accepts the socket that has been given, the TAKESOCKET call
assigns a new socket number for the subtask to use. This new socket number
represents the same connection as the parent’s socket. (The transferred socket
might be referred to as socket number 54 by the parent task and as socket number
3 by the subtask; however, both socket descriptors represent the same connection.)

Once the socket has successfully been transferred, the TCPIP address space posts
an exceptional condition on the parent’s socket. The parent uses the SELECT call
to test for this condition. When the parent task SELECT call returns with the excep-
tion condition on that socket (indicating that the socket has been successfully
passed) the parent issues CLOSE to complete the transfer and deallocate the
socket from the main task.

To continue the sequence, when another client request comes in, the concurrent
server (Listener) gets another new socket, passes the new socket to the new
subtask, and dissociates itself from that connection. And so on.

6 If a task does not know its address space name, it can use the GETCLIENTID function call to determine its unique name.

7 This is the case in IMS because the Listener has no way of knowing which Message Processing Region will inherit the socket.

22 IP IMS Sockets Guide

 Summary
To summarize, the process of passing the socket is accomplished in the following
way:

¹ After creating a subtask, the server main task issues the GIVESOCKET call to
pass the socket to the subtask. If the subtask’s address space name and
subtask ID are specified in the GIVESOCKET call, (as with CICS) only a
subtask with a matching address space and subtask ID can take the socket. If
this field is set to blanks, (as with IMS) any MVS address space requesting a
socket can take this socket.

¹ The server main task then passes the socket descriptor and concurrent server’s
ID to the subtask using some form of commonly addressable technique such as
the IMS Message Queue.

¹ The concurrent server issues the SELECT call to determine when the
GIVESOCKET has successfully completed.

¹ The subtask calls TAKESOCKET with the concurrent server’s ID and socket
descriptor and uses the resulting socket descriptor for communication with the
client.

¹ When the GIVESOCKET has successfully completed, the concurrent server
issues the CLOSE call to complete the handoff.

An example of a concurrent server is the IMS Listener. It is described in Chapter 8,
“How to Customize and Operate the IMS Listener” on page 105. Figure 5 on
page 14 shows a concurrent server.

What You Need to Run IMS TCP/IP
IMS TCP/IP OTMA Server runs on an MVS/SP host system running IMS Version
5.1 and TCP/IP for MVS Version 3 Release 2 with PTF UQ03104.

IMS TCP/IP using the IMS Listener and IMS Assist Module is designed for use on
an MVS/SP host system running: Version 4 and TCP/IP for MVS Version 3 Release
1 or later.

A TCP/IP host can communicate with any remote IMS or non-IMS system that runs
TCP/IP. The remote system can, for example, run a UNIX or OS/2 operating
system.

TCP/IP for MVS
TCP/IP for MVS is not described in this book because it is a prerequisite for IMS
TCP/IP. However, much material from the TCP/IP library has been repeated in this
book in an attempt to make it independent of that library.

A Summary of What IMS TCP/IP Provides
Figure 7 on page 24 shows how IMS TCP/IP allows IMS applications to access the
TCP/IP network. It shows that IMS TCP/IP makes the following facilities available to
your application programs:

The sockets calls (1 and 2 in Figure 7 on page 24)

 Chapter 2. Introduction to TCP/IP for IMS 23

The socket API is available both in the C language and in COBOL, PL/I, or assem-
bler language. It includes the following socket calls:

Basic calls: socket, bind, connect, listen,

accept, shutdown, close

Read/write calls: send, sendto, recvfrom, read, write

Advanced calls: gethostname, gethostbyaddr, gethostbyname,

getpeername, getsockname, getsockopt, setsockopt, fcntl, ioctl, select

IBM-specific calls: initapi, getclientid, givesocket,

takesocket

User
Applications TCP/IP

network

MVS

IMS

TCP/IP
for

MVS

Applications Operating
Environment

1. C language
socket calls

2. COBOL,Ass.
sockets calls

5. Conversion
routines

4. Listener

3. IMS OTMA
Connection
Server

TCP/IP for IMS

Figure 7. How User Applications Access TCP/IP Networks with IMS TCP/IP

IMS TCP/IP provides for both connection-oriented and connectionless (datagram)
services, using the TCP and UDP protocols respectively. TCP/IP does not support
the IP (raw socket) protocol.

The IMS TCP/IP OTMA Connection Server (3)

The IMS OTMA Connection server, along with the EZAIMSO0 exit routine, allows a
remote client to make connection requests to IMS.

The Listener (4)

IMS TCP/IP includes a concurrent server application, called the Listener, to which
the client makes initial connection requests. The Listener passes the connection
request on to the user-written server, which is typically an IMS Message Processing
Program.

Conversion routines (5)

IMS TCP/IP provides the following conversion routines, which are part of the base
TCP/IP for MVS product:

24 IP IMS Sockets Guide

¹ The IMS TCP/IP OTMA Conncection server, which is shipped by IMS (go to
URL www.software.ibm.com/data/ims/about/imsweb to download the code).

¹ EZAIMS00, which is shipped by TCP/IP for MVS as PTF

¹ An EBCDIC-to-ASCII conversion routine, used to convert EBCDIC data within
IMS to the ASCII format used in TCP/IP networks and workstations. It is run by
calling module EZACIC04.

¹ A corresponding ASCII-to-EBCDIC conversion routine (EZACIC05).

¹ A module that converts COBOL character arrays into bit-mask arrays used in
TCP/IP. This module, which is run by calling EZACIC06, is used with the socket
SELECT call.

¹ A module that interprets a C language structure known as Hostent. (EZACIC08).

 Chapter 2. Introduction to TCP/IP for IMS 25

26 IP IMS Sockets Guide

Part 2. Using the IMS OTMA Connection Server

Chapter 3. Using IMS TCP/IP OTMA Connection from TCP/IP Clients . . 29
IMS TCP/IP OTMA Connection Server Overview 29
How the Connection Is Established . 30

Requesting an IMS Transactions . 30
IMS-Request Message Segment . 30
Request-Mod Message Segment . 31

Verifying the Transaction Request . 32
Request-Status Message Segment . 32

Scheduling the Transaction . 34
Complete-Status Message Segment . 34

IMS OTMA Connection Security Exit . 34

Chapter 4. IMS OTMA Connection Server Sample Programs 37
TPIIMSDP — Triple-Purpose IMS Server Program 37
TPIOTMAC — IMS OTMA Listener COBOL Client Program 44
TPICPART — IMS OTMA Listener C Client Program 55
IMSLSECX — IMS BMP and OTMA Listener Security Exit 62

 Copyright IBM Corp. 1994, 1997 27

28 IP IMS Sockets Guide

Chapter 3. Using IMS TCP/IP OTMA Connection from TCP/IP
Clients

This chapter describes the call sequences and input/output data formats used by
the client program for IMS transaction using the IMS TCP/IP Open Transaction
Manager Access (OTMA) connection server and the EZAIMSO0 exit. The IMS
TCP/IP OTMA Connection server, along with the EZAIMSO0, is similar to using the
IMS Listener, with the following differences:

¹ With the IMS OTMA Connection server, all output from the IMS transaction
goes through the IMS message queue like normal IMS processing.

¹ TCP/IP clients connect to the IMS OTMA Connection server, instead of the IMS
Listener. With the IMS OTMA Connection server, client transactions do not
have to be modified and the details of the requestor are transparent.

¹ The IMS OTMA Connection Server supports RACF security.

¹ IMS transactions are no longer connected directly to the TCP/IP client, so the
GIVESOCKET and TAKESOCKET functions are not used (which can improve
performance).

The IMS OTMA connection server is available on an MVS or OS/390 platform if
you have IMS/ESA Version 5. You can download the IMS TCP/IP OTMA Con-
nection server component from the IMS Web Page at the following URL:

www.software.ibm.com/data/ims/about/imsweb

See the IMS OTMA Connection User's Guide on the IMS Web Page for installation
and configuration information at the following URL:

www.software.ibm.com/data/ims/about/imsweb/userg/index.html#

The EZAIMSO0 exit is available with TCP/IP for MVS Version 3 Release 2 with
PTF UQ03104.

IMS TCP/IP OTMA Connection Server Overview
The new IMS TCP/IP OTMA Connection server is a replacement of the IMS Lis-
tener and IMS Assist module for remote clients to connect to IMS, and is the
recommended method for TCP/IP-to-MVS connections. The IMS Listener and IMS
Assist Module are still supported, and are required for explicit-mode transactions.

Note: The IMS TCP/IP OTMA Connection server does not support explicit-mode
transactions. You should continue to use the IMS Listener for explicit-mode
transactions.

The IMS TCP/IP OTMA Connection server allows remote socket clients to connect
to IMS using normal unmodified IMS transactions. These transactions might already
exist and can be used by other types of clients, like an IBM 3270 terminal. The IMS
OTMA Connection server can also use IMS-mode transactions that were written in
previous releases of the the IMS Socket feature.

This server works with the IMS host web services (HWS) component as a concur-
rent server main process. When the client requests the services of an IMS
message processing program (MPP), it connects to the IMS TCP/IP OTMA Con-

 Copyright IBM Corp. 1994, 1997 29

nection server on a host that supports the IMS transaction code of that MPP. The
IMS TCP/IP OTMA Connection server receives the request, forwards a transaction
over the OTMA interface to IMS. IMS schedules the requested MPP; the MPP
starts, receives the input, processes the transaction, and inserts output messages
to the IMS message queue. When the transaction reaches its synchronization point,
IMS forwards the output messages over the OTMA interface to the IMS TCP/IP
OTMA Connection server, and the server transmits the output to the remote client
over the socket connection.

How the Connection Is Established
Support for TCP client is implemented as an exit routine, EZAIMSO0, in the IMS
HWS. The following sections describe the function of the IMS TCP/IP OTMA Con-
nection server, with EZAIMSO0, when connecting remote clients to IMS.

Requesting an IMS Transactions
The client initiates the request by passing an IMS-request message (IRM) as the
first message segment to the IMS TCP/IP OTMA Connection server. The IRM
determines which IMS receives the request and the name of the transaction to be
scheduled.

IMS-Request Message Segment
To initiate a connection with an IMS server, the client first issues an IMS-request
message segment (IRM), which tells the IMS OTMA TCP/IP Connection server
which transaction to schedule. The value of the IMSdest field must match the ID
keyword on a DATASTORE definition in the HWS configuration data set.

The remote client sends the IRM to the port number that you specified on the
PORTID keyword on the TCP/IP definition in the HWS configuration data set.

The format of the IMS-request message segment (IRM) follows:

30 IP IMS Sockets Guide

Field Format Meaning

IRMMask DSECT IMS request message dsect.

IRM_Len H Length of the IRM (in binary) including this field. This field is sent in
network byte order.

IRM_Rsv H Reserved.

IRM_Id CL8 Identifying string. Always *IRMREQ*. If the client data stream will be
sent in ASCII, the IRMId field should also be transmitted in ASCII
because the OTMA Listener uses this field to determine whether
ASCII to EBCDIC translation is required.

IRM_TrnCod CL8 The transaction code (TRANCODE) of the IMS transaction to be
started. It must not begin with a / character; it must follow the
naming rules for IMS transactions. If the OTMA Listener has deter-
mined that data will be transmitted in ASCII, it translates the trans-
action code to EBCDIC before any further processing is done.

IRM_IMSDestId CL8 The IMS destination ID of the IMS, where the transaction will run.
The IMS destination IDs are defined in the configuration file for the
IMS TCP/IP OTMA Connection server. This field must match the ID
keyword on a DATASTORE definition in the IMS host web server
(HWS) configuration file.

IRM_Lterm CL8 Optional field the client can use to supply an lterm name for the IMS
transaction. The field must be set to blanks if not used.

IRM_Flag X Allows the client to pass information to the exit. Currently only one
flag setting is supported.

IRM_MFSREQ X'80' TCP/IP client request the MVS MOD name be returned by IMS.
Setting the MVSReq flag results in clients receiving a request mod
message (RMM) as the first segment in the output buffer. See
“Request-Mod Message Segment” on page 31 for a description of
the RMMs.

IRM_Rsv2 CL3 Reserved.

IRM_UsrDat 0C The beginning of user security data.

IRMMask_len * Size of IRM.

Request-Mod Message Segment
If you set the IRM_MVSReq flag to X'80, an request—mod message (RMM)
segment is sent as an output stream to the client. The RMM indicates the MVS
MOD name used by the IMS application.

Field Format Meaning

RMMask DSECT Request mod message dsect.

RMM_Len H Length of the RMM.

RRM_Rsv H Reserved.

RRM_Id CL8 RMM id '*REQMOD*' DIdentifying string. (in ASCII and EBCDIC)

RRM_Modname CL8 MFS MOD for this output.

RRMMask_len * Size of RRM.

 Chapter 3. Using IMS TCP/IP OTMA Connection from TCP/IP Clients 31

Verifying the Transaction Request
The IMS TCP/IP OTMA Connection server performs several tests to ensure that the
requested transaction should be accepted. The following actions depend on the
results of the verification:

¹ If the transaction request is rejected, the IMS TCP/IP OTMA Connection server
returns a request-status message (RSM) segment to the client with an indi-
cation of the reason for rejecting the request; it then closes the connection.

¹ If the transaction request is accepted the requested transaction is sent back to
the IMS TCP/IP OTMA Connection server (IMS TCP/IP OTMA Connection
server does not return a status message to the client).

Request-Status Message Segment
If the IMS TCP/IP OTMA Connection server sends a request-status-messages
segment to the client (indicating an error condition), the request-status message
segment (RSM) contains a return and reason code indicating the type of error. This
segment has the following format:

Field Format Description

RSMLen H Length of message (in binary), including this field.

RSMRsv CL2 Reserved.

RSMId CL8 Identifying string. Always *REQSTS*. This field is translated to ASCII
if the OTMA Listener has determined that the client is transmitting in
ASCII.

RSMRetcod F Return code, sent in network byte order. Set to nonzero (for
example, 4, 8, 12) to indicate an error. The nonzero value is further
explained by the reason code (RSMRsnCod).

RSMRsnCod F Reason Code, sent in network byte order. Reason codes 0 — 100
are reserved for use by the OTMA listener. Codes greater than 100
can be assigned by the user-written security exit.

Request-Status Message Reason Codes: If the IMS TCP/IP OTMA Connection
sends a request-status message (RSM) segment to the client (indicating an error
condition), the RSM contains a return and reason code indicating the type of error:

¹ If the user-supplied security exit rejects a transaction request, it sets the return
code and reason code, and returns control to EZAIMSO0. EZAIMSO0 builds
the RSM to send to the client.

¹ If EZAIMSO0 detects other errors that cause a request to be rejected, it sets a
return code of 8 and a reason code from the following list.

4 The input buffer is full as the client has sent more than 32KB of data
for an implicit transaction.

8 A negative acknowledgment (NAK) was returned by IMS/OTMA, but
no sense code or return code was returned.

100 up Reason codes of 100 or higher are defined by the user-supplied
security exit.

¹ If the HWS detects an error that causes a transaction request to fail, a RSM
with return code 12 (X'0C') and a reason or sense code from the following list
are sent to the client:

32 IP IMS Sockets Guide

1 NACK_NOT_IN_SESSION

2 NACK_BLOCKED

3 NACK_PROTOCOL_ERROR

4 NACK_BAD_CORRELATOR

5 NACK_DUPLICATE_SEGMENT

6 NACK_XSF_BADRC

7 NACK_OUT_OF_MTE

8 NACK_CLIENTBID_SEC_FAILED

9 NACK_UNKNOWN_OTMA_CMD

10 NACK_INPUT_IS_DATA

11 NACK_INVALID_MSG_TYPE

12 NACK_UNKNONW_RESPONSE_TYPE

13 NACK_INVALID_IMS_CONV_CONT

14 NACK_UNABLE_CREATE_TPIPE

15 NACK_TPIPE_STOPPED

16 NACK_NO_STATE_DATA

17 NACK_INVALID_COMMIT_MSG

18 NACK_PREFIX_TOO_BIG

19 NACK_NO_MSG_HASHTABLE_SIZE

20 NACK_INVALID_STATE

21 NACK_NO_MSG_HASHTABLE

22 NACK_MEM_NOT_ACTIVE

23 NACK_INVALID_SYNC_LEVEL

24 NACK_INVALID_TPIPE_NAME

25 NACK_INVALID_NEMBER_NAME

26 NACK_ERROR_IN_MESSAGE

27 NACK_IMS_IN_SHUTDOWN

28 NACK_INVALID_COMMIT_MODE

29 NACK_INVALID_UDATA_LEN

30 NACK_IMS_UDATA_LEN

31 NACK_INVALID_RECOV_SEG_NUM

32 NACK_NO_APPL-DATAA

33 NACK_NO_CHAIN_FLAG

34 NACK_UNABLE_FIND_TPIPE

36 NACK_CONV_IN_PROCESS

60 NANDCOMP - Component not found

61 NFNDFUNC - Function not found

 Chapter 3. Using IMS TCP/IP OTMA Connection from TCP/IP Clients 33

62 Nfnddst - Datastore not found

63 DSCLOSE - HWS in shutdown

64 STP/CLSE - Datastore in stop or close process

65 DSCERR - Datastore communication error

66 STOPCMD - Datastore was stopped by command

67 COMMERR - Datastore communication error to pending clients.

Scheduling the Transaction
An IMS transaction is scheduled by the IMS OTMA Connection Server, where the
IRM is quered for normal processing. The Complete-Status Message indicates the
the transaction has completed successfully.

Complete-Status Message Segment
The complete-status message (CSM) segment is sent by the OTMA Listener to
indicate the successful completion of an implicit-mode transaction, including the fact
that database updates have been committed. The format of the complete-status
message segment follows:

Field Format Description

H Length of data segment (in binary) including this field

CSMRsv H Reserved field; must be set to zero

CSMId CL8 *CSMOKY* This field is translated to ASCII if the client is transmit-
ting in ASCII.

IMS OTMA Connection Security Exit
The IMS OTMA Connection server can be link-edited with an installation developed
security exit. The exit routine has the same name as the IMS Listener exit
(IMSLSECX); therefore, you can use the same security exit routine for both the IMS
Listener and IMS OTMA Connection server. See “IMSLSECX — IMS BMP and
OTMA Listener Security Exit” on page 62 for a sample that includes and IMS Lis-
tener and IMS OTMA Connection server security exit.

If the IMS OTMA connection server calls the security exit, 2 extra parameters are
passed to the exit routine. These 2 fields can be used by the exit routine to return a
userid and a group ID, which are added to the OTMA headers. The userid that is
passed by the security exit is the userid that IMS uses to authorize access to the
IMS transaction and is the userid that is passed to the IMS application in the userid
field of the IO PCB.

If you have created an IMS OTMA listener security exit routine and linked the exit
with EZAIMSO0, this exit routine will be invoked for every IRM message. The user
data area is passed to the exit routine and is based on installation standards for the
layout of the user data area. The exit routine can perform various security tasks,
such as verifying a userid and password. If you develop a security exit for the IMS
OTMA Connection server and the IMS Listener, the following user data layout in
the IRM must match the TRM user data:

USERID 8 byte userid of the client user

34 IP IMS Sockets Guide

PASSWORD 8 byte userid of the client user

NEWPASW 8 byte optional new password of the client user

GROUP 8 byte optional RACF group ID

The IMS OTMA Connection server security exit returns a userid and a group ID
(optional) to the IMS OTMA Connection server. If these two fields are blank, the
server passes the transaction on to IMS without any userid information. The IMS
OTMA Connection server can choose which userid and group ID to return to the
OTMA listener.

The following sample JCL shows how you can include the security exit in the IMS
OTMA Connection server.

//LINKOTMA EXEC PGM=IEWL,PARM='LIST,XREF,REUS'

//SYSPRINT DD SYSOUT=*

//AEZAMOD1 DD DSN=TCPIP.V3R2M0.AEZAMOD1,DISP=SHR

//SYSLMOD DD DSN=TCPIP.IMSWEB2.LOAD,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,

// SPACE=(1024,(200,20))

//SYSLIB DD DSN=TCPIP.T18AIMS.RESLIB,DISP=SHR

// DD DSN=TCPIP.TPI32.LOAD,DISP=SHR

// DD DSN=TCPIP.V3R2M0.SEZACMTX,DISP=SHR

// DD DSN=TCPIP.V3R2M0.SEZALINK,DISP=SHR

// DD DSN=TCPIP.V3R2M0.SEZATCP,DISP=SHR

//EXIT DD DSN=TCPIP.TPI32.LOAD,DISP=SHR

//SYSLIN DD DSN=TCPIP.ITSC.OBJ(EZAIMSO0),DISP=SHR

// DD DDNAME=SYSIN

//SYSIN DD *

 ORDER CMCOPYR

 INCLUDE EXIT(IMSLSECX)

 INCLUDE AEZAMOD1(EZAAE00B)

 INCLUDE AEZAMOD1(EZAAE02A)

 INCLUDE AEZAMOD1(EZAAE05F)

 ENTRY EZAIMSO0

MODE RMODE(24) AMODE(31)

 NAME EZAIMSO0(R)

/*

If you do not link a security exit with the IMS OTMA Connection server and you still
want RACF to verify the userid, you must provide a default RACFID keyword in the
HWS configuration file. If a RACFID keyword is available, the userid authorization is
based on either a userid or group ID, which is passed in the IRM user data section,
or on the RACFID keyword (if no user data information is available). The layout of
the user data section is as follows:

USERID 8 byte userid of the client user

GROUP 8 byte optional RACF group ID

The userid is not verified, because there is no password passed from the client. If
you need to verify the userid, you have to create an IMS OTMA Connection server
security exit as described earlier.

If the IRM does not include any optional user data, but the installation has specified
a RACFID keyword in the HWS configuration dataset, the IMS transactions that are

 Chapter 3. Using IMS TCP/IP OTMA Connection from TCP/IP Clients 35

initiated by the OTMA listener is authorized against the userid specified on the
RACFID keyword in the TCPIP statement.

36 IP IMS Sockets Guide

Chapter 4. IMS OTMA Connection Server Sample Programs

This appendix contains the following sample for the IMS OTMA Connection server..

¹ “TPIIMSDP — Triple-Purpose IMS Server Program”

¹ “TPIOTMAC — IMS OTMA Listener COBOL Client Program” on page 44

¹ “TPICPART — IMS OTMA Listener C Client Program” on page 55

¹ “IMSLSECX — IMS BMP and OTMA Listener Security Exit” on page 62

TPIIMSDP — Triple-Purpose IMS Server Program
This IMS message processing program may be used from the following clien types:

¹ 3270 based (MFS input).

¹ Sockets using the IMS Listener and accessing the server as an implicit-mode
socket server program.

¹ Sockets using the IMS OTMA Connection server.

The TPIIMSDP sample program is started through the IMS transaction code
TPIPART.

 Identification Division.

 ========================

 * *

* Name: TPIIMSDP - DI21PART database query program. *

 * *

 * Trancode: TPIPART *

 * *

* Function: Receives a part number, fetches data from the *

* DI21PART database and sends a message back. *

* Works for both MFS 3270, implicit-mode sockets *

* and OTMA sockets. Triple-purpose MPP! *

* Due to support for implicit-mode, we call *

* CBLADLI instead of CBLTDLI. If input is from *

* 3270 or from OTMA listener, the assist code *

* will just pass all DLI calls (both DB and DC) *

* through to the real DLI language interface *

 * module. *

 * *

* Interface: - none - *

 * *

* Logic: 1. Receive input message *

* 2. Look up PARTROOT and STANINFO segments *

* 3. Format output message according to *

 * defined layout *

* 4. Insert output message and terminate *

 * *

* Returncode: - none - *

 * *

* Written: March 1997, ITSO Raleigh *

 * *

 Copyright IBM Corp. 1994, 1997 37

 * Modified: *

 * *

 Program-id. TPIIMSDP.

 =====================

 Environment Division.

 =====================

 ==============

 Data Division.

 ==============

 Working-storage Section.

* Status messages *

 01 partnumber-unknown pic x(79)

Value 'Part number is not in database'.

 01 staninfo-unknown pic x(79)

Value 'Only basic information is available for part number'.

 01 dli-unknown.

05 filler pic x(11) Value 'DLI status='.

 05 status-dli pic x(2).

05 filler pic x(10) Value ' Function='.

 05 status-function pic x(4).

05 filler pic x(9) Value ' Segment='.

 05 status-segment pic x(8).

 05 filler pic x(1) Value space.

05 status-message pic x(34) Value space.

 01 ioerr-unknown.

05 filler pic x(11) Value 'DLI status='.

 05 ioerr-dli pic x(2).

05 filler pic x(10) Value ' Function='.

 05 ioerr-function pic x(4).

05 filler pic x(8) Value ' Assist='.

 05 ioerr-status pic x(6) Value space.

05 filler redefines ioerr-status.

 10 ioerr-char pic x(2).

 10 filler pic x(4).

05 ioerr-num redefines ioerr-status

 pic -99999.

 05 filler pic x(1) Value space.

05 ioerr-message pic x(31) Value space.

01 echo-data pic x(36) Value space.

* Work variables *

01 dli-gu pic x(4) Value 'GU'.

01 dli-isrt pic x(4) Value 'ISRT'.

01 dli-gn pic x(4) Value 'GN'.

01 dli-gnp pic x(4) Value 'GNP'.

01 mod-name pic x(8) Value 'ABCO02'.

* SSA's for PARTROOT and STANINFO segments *

38 IP IMS Sockets Guide

 01 partroot-ssa.

05 filler pic x(8) Value 'PARTROOT'.

05 filler pic x(11) Value '(PARTKEY ='.

05 filler pic x(2) Value '02'.

05 partroot-key pic x(15) Value Space.

05 filler pic x(1) Value ')'.

 01 staninfo-ssa.

05 filler pic x(8) Value 'STANINFO'.

05 filler pic x(1) Value ' '.

* PARTROOT segment IO area *

 01 partroot-segment.

 05 filler pic x(2).

 05 partroot-partno pic x(15).

 05 filler pic x(9).

 05 partroot-descr pic x(20).

 05 filler pic x(4).

* STANINFO segment IO area *

 01 staninfo-segment.

 05 staninfo-proc-code pic x(2).

 05 staninfo-inv-code pic x(1).

 05 staninfo-rev-number pic x(2).

 05 filler pic x(24).

 05 staninfo-makedept pic x(2).

 05 staninfo-makecost pic x(2).

 05 filler pic x(2).

 05 staninfo-commodity-code pic x(4).

 05 filler pic x(4).

 05 filler pic x(25).

* Terminal segment input/output area (MID and MOD) *

 01 buffer.

05 buffer-ll pic 9(4) Binary.

05 buffer-zz pic 9(4) Binary.

 05 input-buffer.

 10 input-trancode pic x(8).

 10 input-partno pic x(15).

 10 filler pic x(102).

05 input-buffer-segment2 redefines input-buffer.

 10 input-echo-data pic x(36).

 10 filler pic x(89).

05 output-buffer redefines input-buffer.

 10 output-partno pic x(15).

 10 output-descr pic x(20).

 10 output-proc-code pic x(2).

 10 output-inv-code pic x(1).

 10 output-revision-nbr pic x(2).

 10 output-makedept pic x(2).

 10 output-makecctr pic x(2).

 10 output-commodity pic x(2).

 Chapter 4. IMS OTMA Connection Server Sample Programs 39

 10 output-status pic x(79).

05 output-buffer-2 redefines input-buffer.

 10 output-echo-data pic x(36).

 10 filler pic x(89).

 01 buffer-x.

05 buffer-ll-x pic 9(4) Binary.

05 buffer-zz-x pic 9(4) Binary.

 05 input-buffer-x.

 10 input-trancode-x pic x(8).

 10 input-partno-x pic x(15).

 Linkage section.

* Input-Output PCB layout *

 01 iopcb.

 05 iopcb-lterm pic x(8).

05 iopcb-assist-status-bin pic s9(4) comp.

 05 iopcb-assist-status-char redefines

 iopcb-assist-status-bin pic x(2).

 88 iopcb-assist-aib-error value 'EA'.

88 iopcb-assist-buffer-full value 'EB'.

 88 iopcb-assist-tim-only value 'EC'.

 05 iopcb-status pic x(2).

 88 iopcb-dli-stop value 'QC'.

 88 iopcb-dli-ok value ' '.

 88 iopcb-assist-error value 'ZZ'.

05 iopcb-cdate pic s9(7) comp-3.

05 iopcb-ctime pic s9(7) comp-3.

05 iopcb-input-msgno pic 9(8) binary.

 05 iopcb-output-mod pic x(8).

 05 iopcb-userid pic x(8).

 01 altpcb1.

 05 altpcb1-lterm pic x(8).

 05 filler pic x(2).

 05 altpcb1-status pic x(2).

 01 altpcb2.

 05 altpcb2-lterm pic x(8).

 05 filler pic x(2).

 05 altpcb2-status pic x(2).

* DI21PART PCB layout *

 01 di21part-pcb.

 05 filler pic x(10).

 05 dbpcb-status pic x(2).

 88 dbpcb-dli-ok Value ' '.

 88 dbpcb-dli-not-found Value 'GE'.

 05 filler pic x(8).

 05 dbpcb-segment-feedback pic x(8).

 ==

Procedure Division using iopcb, altpcb1, altpcb2, di21part-pcb.

 ==

40 IP IMS Sockets Guide

* Receive one input segment. *

 Get-unique.

Display '****GU on IOPCB*********************************'.

Display 'Doing new GU on the IO-PCB...'

Call 'CBLADLI' using dli-gu

 iopcb

 buffer-x.

Display 'Just after new GU:'.

Display ' iopcb-status = ' iopcb-status.

If iopcb-dli-stop then

Display 'Exiting after QC status code.'

go to exit-now.

Display ' buffer-ll = ' buffer-ll-x.

Display ' buffer-zz = ' buffer-zz-x.

Display ' input-trancode = ' input-trancode-x.

Display ' input-buffer = ' buffer-x.

Display ' lterm-name = ' iopcb-lterm.

Display ' user-id = ' iopcb-userid.

if not iopcb-dli-ok then

move dli-gu to ioerr-function

Perform io-error thru io-error-exit

go to exit-now.

* Origin of input may be determined by analyzing the *

* buffer-zz field. If it is zero, input has not been *

* processed by MFS and originates from a socket client. *

* If buffer-zz is 1,2 or 3 input has been processed by MFS *

* and the value corresponds to the MFS option in effect. *

If buffer-zz-x = 0 then

Display 'Input originates from socket client'

 else

Display 'Input originates from 3270 terminal'.

Display 'iopcb-lterm = ' iopcb-lterm.

Display 'iopcb-userid = ' iopcb-userid.

* Look up info in PARTROOT *

move input-partno-x to partroot-key.

Display 'Just before GN on IO-PCB.'

Call 'CBLADLI' using dli-gn

 iopcb

 buffer.

 Chapter 4. IMS OTMA Connection Server Sample Programs 41

Display 'Just after GN:'.

Display ' iopcb-status = ' iopcb-status.

Display ' buffer-ll = ' buffer-ll.

Display ' buffer-zz = ' buffer-zz.

Display ' input-trancode = ' input-trancode.

Display ' input-buffer = ' buffer.

Move input-echo-data to echo-data.

 *

move space to output-buffer.

Call 'CBLADLI' using dli-gu

 di21part-pcb

 partroot-segment

 partroot-ssa.

Display 'GU partroot status = ' dbpcb-status.

if dbpcb-dli-not-found then

move partnumber-unknown to output-status

go to isrt-output.

if not dbpcb-dli-ok then

move dli-gu to status-function

perform db-error thru db-error-exit

go to isrt-output.

* Look up info in STANINFO *

Call 'CBLADLI' using dli-gnp

 di21part-pcb

 staninfo-segment

 staninfo-ssa.

Display 'GNP staninfo status = ' dbpcb-status.

if dbpcb-dli-not-found then

move partroot-partno to output-partno

move partroot-descr to output-descr

move staninfo-unknown to output-status

go to isrt-output.

if not dbpcb-dli-ok then

move dli-gnp to status-function

perform db-error thru db-error-exit

go to isrt-output.

* Build output segment *

move partroot-partno to output-partno.

move partroot-descr to output-descr.

move staninfo-proc-code to output-proc-code.

move staninfo-rev-number to output-revision-nbr.

move staninfo-inv-code to output-inv-code.

move staninfo-makedept to output-makedept.

move staninfo-makecost to output-makecctr.

move staninfo-commodity-code to output-commodity.

move space to output-status.

42 IP IMS Sockets Guide

* Send output segment *

 isrt-output.

move 150 to buffer-ll.

move zero to buffer-zz.

Display 'Just before ISRT of reply:'

Display ' buffer-ll = ' buffer-ll.

Display ' buffer-zz = ' buffer-zz.

Display ' output buffer = ' output-buffer.

Call 'CBLADLI' using dli-isrt

 iopcb

 buffer

 mod-name.

Display 'Just after ISRT of reply:'

Display ' iopcb-status = ' iopcb-status.

if not iopcb-dli-ok then

move dli-isrt to ioerr-function

Perform io-error thru io-error-exit

go to exit-now.

 *

Move space to output-buffer.

move echo-data to output-echo-data.

move 40 to buffer-ll.

Display 'Just before ISRT of echo-segment:'.

Display ' buffer-ll = ' buffer-ll.

Display ' buffer-zz = ' buffer-zz.

Display ' output buffer = ' output-buffer.

Call 'CBLADLI' using dli-isrt

 iopcb

 buffer.

Display 'Just after ISRT of echo-segment:'.

Display ' iopcb-status = ' iopcb-status.

if not iopcb-dli-ok then

move dli-isrt to ioerr-function

Perform io-error thru io-error-exit

go to exit-now.

 *

go to get-unique.

* Handle bad DLI status from a DB call *

 db-error.

move dbpcb-status to status-dli.

move dbpcb-segment-feedback to status-segment.

move 'DLI Call failed' to status-message.

move dli-unknown to output-status.

 db-error-exit.

 Chapter 4. IMS OTMA Connection Server Sample Programs 43

 exit.

* Handle bad DLI status from an IO call *

 io-error.

move iopcb-status to ioerr-dli.

move space to ioerr-status.

If iopcb-assist-error then

if iopcb-assist-status-bin < 0 then

move iopcb-assist-status-bin to ioerr-num

 else

move iopcb-assist-status-char to ioerr-char

 end-if

move 'Socket error' to ioerr-message

 else

move space to ioerr-char

move 'IO PCB call failed' to ioerr-message

 end-if.

 Display ioerr-unknown.

 io-error-exit.

 exit.

* Terminate program *

 exit-now.

 Goback.

TPIOTMAC — IMS OTMA Listener COBOL Client Program
This sample client program uses the server program that is described in
“TPIIMSDP — Triple-Purpose IMS Server Program” on page 37.

 Identification Division.

 ========================

 * *

* Name: TPIOTMAC - Client to test transaction ESRVI via *

* the IMS OTMA listener. *

 * *

* Function: Sends message to server and receives reply. *

* The server program is started via the IMS OTMA *

* Listener. Transaction code is ESRVI *

 * *

* All messages exchanged between client and server *

* are preceeded by a 2 byte binary length field. *

 * *

* Client builds an IMS Request Message (IRM) *

* which is send to the IMS OTMA Listener. *

* Data segments are sent and echoed back from *

 * the server. *

* Last data segment sent is an EOM message with *

* length field of 4. *

* Client code includes logic to deal with *

* Request Status Messages (RSM), Request MOD *

44 IP IMS Sockets Guide

* Messages (RMM), and Completed Status Messages *

 * (CSM). *

 * *

* Interface: Server host name is mvs18 *

* OTMA listener listens on port 3005 *

 * *

* Logic: 1. Connect to IMS OTMA Listener *

* 2. Send IMS Request Message (IRM) *

* 3. Send data to be echoed back incl. EOM seg. *

* 4. Receive echoed data or/and RSM and RMM *

* 6. Receive Transaction Completed Status *

 * Message *

* 7. Close socket and terminate *

 * *

* Returncode: - none - *

 * *

* Written: March 1997, at ITSO Raleigh *

 * *

 * Modified: *

 * *

 Program-id. TPIOTMAC.

 =====================

 Environment Division.

 =====================

 ==============

 Data Division.

 ==============

 Working-storage Section.

* Socket interface function codes *

 01 soket-functions.

05 soket-accept pic x(16) value 'ACCEPT '.

05 soket-bind pic x(16) value 'BIND '.

05 soket-close pic x(16) value 'CLOSE '.

05 soket-connect pic x(16) value 'CONNECT '.

05 soket-fcntl pic x(16) value 'FCNTL '.

05 soket-getclientid pic x(16) value 'GETCLIENTID '.

05 soket-getibmopt pic x(16) value 'GETIBMOPT '.

05 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR '.

05 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME '.

05 soket-gethostid pic x(16) value 'GETHOSTID '.

05 soket-gethostname pic x(16) value 'GETHOSTNAME '.

05 soket-getpeername pic x(16) value 'GETPEERNAME '.

05 soket-getsockname pic x(16) value 'GETSOCKNAME '.

05 soket-getsockopt pic x(16) value 'GETSOCKOPT '.

05 soket-givesocket pic x(16) value 'GIVESOCKET '.

05 soket-initapi pic x(16) value 'INITAPI '.

05 soket-ioctl pic x(16) value 'IOCTL '.

05 soket-listen pic x(16) value 'LISTEN '.

05 soket-read pic x(16) value 'READ '.

05 soket-readv pic x(16) value 'READV '.

05 soket-recv pic x(16) value 'RECV '.

 Chapter 4. IMS OTMA Connection Server Sample Programs 45

05 soket-recvfrom pic x(16) value 'RECVFROM '.

05 soket-recvmsg pic x(16) value 'RECVMSG '.

05 soket-select pic x(16) value 'SELECT '.

05 soket-selectex pic x(16) value 'SELECTEX '.

05 soket-send pic x(16) value 'SEND '.

05 soket-sendmsg pic x(16) value 'SENDMSG '.

05 soket-sendto pic x(16) value 'SENDTO '.

05 soket-setsockopt pic x(16) value 'SETSOCKOPT '.

05 soket-shutdown pic x(16) value 'SHUTDOWN '.

05 soket-socket pic x(16) value 'SOCKET '.

05 soket-takesocket pic x(16) value 'TAKESOCKET '.

05 soket-termapi pic x(16) value 'TERMAPI '.

05 soket-write pic x(16) value 'WRITE '.

05 soket-writev pic x(16) value 'WRITEV '.

* Work variables *

01 errno pic 9(8) binary value zero.

01 retcode pic s9(8) binary value zero.

01 server-ipaddr-dotted pic x(15) Value space.

01 connect-status pic 9(4) Binary value zero.

 88 connect-done value 1.

01 close-status pic 9(4) Binary value zero.

 88 socket-was-closed value 1.

* Variables used for the INITAPI call *

01 maxsocc pic 9(4) Binary Value 2.

01 apitype pic 9(4) Binary Value 2.

 01 initapi-ident.

05 tcpname pic x(8) Value space.

05 asname pic x(8) Value space.

01 subtask pic x(8) value space.

01 maxsno pic 9(8) Binary Value 1.

* Variables returned by the GETCLIENTID Call *

 01 clientid.

05 clientid-domain pic 9(8) Binary.

05 clientid-name pic x(8) value space.

05 clientid-task pic x(8) value space.

05 filler pic x(20) value low-value.

* Variables used for the SOCKET call *

01 afinet pic 9(8) Binary Value 2.

01 soctype-stream pic 9(8) Binary Value 1.

01 proto pic 9(8) Binary Value zero.

01 socket-descriptor pic 9(4) Binary Value zero.

* Variables used for the GETHOSTBYNAME Call *

01 host-namelen pic 9(8) Binary Value 5.

01 host-name pic x(7) Value 'mvs18'.

01 host-entry-addr pic x(4) Value low-value.

* Variables used for the call to EZACIC08 *

46 IP IMS Sockets Guide

01 host-alias-seq pic 9(4) Binary Value zero.

01 host-addr-seq pic 9(4) Binary Value zero.

01 host-name-length pic 9(4) Binary Value zero.

01 host-name-value pic x(255) Value space.

01 host-alias-count pic 9(4) Binary Value zero.

01 host-alias-length pic 9(4) Binary Value zero.

01 host-alias-value pic x(255) Value space.

01 host-addr-type pic 9(4) Binary Value zero.

01 host-addr-length pic 9(4) Binary Value zero.

01 host-addr-count pic 9(4) Binary Value zero.

01 host-addr-value pic x(4) Value low-value.

01 host-return-code pic s9(8) Binary Value zero.

* Variables used for the CONNECT Call *

 01 server-socket-address.

05 server-afinet pic 9(4) Binary Value 2.

05 server-port pic 9(4) Binary Value 3005.

05 server-ipaddr pic x(4) Value low-value.

05 filler pic x(8) value low-value.

* IMS Request Message segment (IRM) *

 01 IRM-message.

05 IRM-len pic 9(4) Binary Value 68.

05 filler pic x(2) Value low-value.

05 IRM-id pic x(8) Value '*IRMREQ*'.

05 IRM-trancode pic x(8) Value 'ESRVI'.

05 IRM-dest pic x(8) Value 'DST18'.

05 IRM-lterm pic x(8) Value 'SOCK001'.

05 IRM-flags pic x(1) Value X'80'.

 88 TRM-MFSReq Value X'80'.

05 filler pic x(3) Value low-value.

 05 IRM-user-data.

10 IRM-userid pic x(8) Value 'ALFRED'.

10 IRM-password pic x(8) Value 'XXXXXXX'.

10 IRM-new-password pic x(8) Value space.

10 IRM-groupid pic x(8) Value space.

* Data segments to IMS server *

 01 request-message-seg1.

05 filler pic 9(4) Binary value 24.

05 filler pic xx value low-value.

 05 filler pic x(20)

Value 'Data segment 1'.

 01 request-message-seg2.

05 filler pic 9(4) Binary value 24.

05 filler pic xx value low-value.

 05 filler pic x(20)

Value 'Data segment 2'.

 01 EOM-message.

05 filler pic 9(4) Binary value 4.

05 filler pic xx value low-value.

* Peek buffer and length fields for RECV peek call. *

01 recv-flag-read pic 9(8) Binary value zero.

 Chapter 4. IMS OTMA Connection Server Sample Programs 47

01 recv-flag-peek pic 9(8) Binary value 2.

01 recv-flag pic 9(8) Binary value zero.

01 recv-peek-len pic 9(8) Binary value 2.

01 recv-peek-len-to-read pic 9(4) Binary value zero.

* Buffers and length fields for read and write *

01 read-request-len pic 9(8) Binary Value zero.

01 read-request-read pic 9(8) Binary Value zero.

01 read-request-remaining pic 9(8) Binary Value zero.

01 send-request-len pic 9(8) Binary Value zero.

01 send-request-sent pic 9(8) Binary value zero.

01 send-request-remaining pic 9(8) Binary value zero.

 01 read-buffer.

05 buffer-total pic x(4096) Value space.

05 RSM-message redefines buffer-total.

 10 filler pic x(4).

 10 RSM-id pic x(8).

 88 RSM-received value '*REQSTS*'.

10 RSM-return-code pic 9(8) Binary.

 88 RSM-OK value zero.

10 RSM-reason-code pic 9(8) Binary.

 10 filler pic x(4076).

05 CSM-message redefines buffer-total.

 10 filler pic x(4).

 10 CSM-id pic x(8).

 88 CSM-received value '*CSMOKY*'.

 10 filler pic x(4084).

05 RMM-message redefines buffer-total.

 10 filler pic x(4).

 10 RMM-id pic x(8).

 88 RMM-received Value '*REQMOD*'.

 10 RMM-MODname pic x(8).

 10 filler pic x(4076).

05 read-buffer-bytes redefines buffer-total.

10 read-buffer-byte pic x occurs 4096 times.

05 data-message redefines buffer-total.

10 returned-len pic 9(4) Binary.

 10 fille pic x(2).

 10 returned-message pic x(40).

 10 filler pic x(4052).

 01 send-buffer.

05 send-buffer-total pic x(8192) value space.

05 send-buffer-seq redefines send-buffer-total

pic x(8) occurs 1024 times.

05 send-buffer-byte redefines send-buffer-total

pic x occurs 8192 times.

* Error message for socket interface errors *

 01 ezaerror-msg.

05 filler pic x(9) Value 'Function='.

05 ezaerror-function pic x(16) Value space.

05 filler pic x value ' '.

05 filler pic x(8) Value 'Retcode='.

 05 ezaerror-retcode pic ---99.

05 filler pic x value ' '.

05 filler pic x(9) Value 'Errorno='.

48 IP IMS Sockets Guide

 05 ezaerror-errno pic zzz99.

05 filler pic x value ' '.

05 ezaerror-text pic x(50) value ' '.

 Linkage Section.

 ==================

 Procedure Division.

 ==================

* Initialize socket API *

Move soket-initapi to ezaerror-function.

Call 'TPICLNID' using asname subtask.

Call 'EZASOKET' using soket-initapi

 maxsocc

 initapi-ident

 subtask

 maxsno

 errno

 retcode.

If retcode < 0 then

move 'Initapi failed' to ezaerror-text

perform write-ezaerror-msg thru write-ezaerror-msg-exit

go to exit-now.

* Let us see the client-id *

move soket-getclientid to ezaerror-function.

Call 'EZASOKET' using soket-getclientid

 clientid

 errno

 retcode.

If retcode < 0 then

move 'Getclientid failed' to ezaerror-text

perform write-ezaerror-msg thru write-ezaerror-msg-exit

go to exit-term-api.

Display 'Client ID = ' clientid-name ' ' clientid-task.

* Get us a socket descriptor *

move soket-socket to ezaerror-function.

Call 'EZASOKET' using soket-socket

 afinet

 soctype-stream

 proto

 errno

 retcode.

If retcode < 0 then

move 'Socket call failed' to ezaerror-text

perform write-ezaerror-msg thru write-ezaerror-msg-exit

 Chapter 4. IMS OTMA Connection Server Sample Programs 49

go to exit-term-api.

Move retcode to socket-descriptor.

* Get host entry structure pointer based on host name *

move soket-gethostbyname to ezaerror-function.

Call 'EZASOKET' using soket-gethostbyname

 host-namelen

 host-name

 host-entry-addr

 retcode.

If retcode < 0 then

move 'Gethostbyaddr failed' to ezaerror-text

perform write-ezaerror-msg thru write-ezaerror-msg-exit

go to exit-close-socket.

* Get info out of the HOSTENT structure. *

* Loop until either returned list of IP addresses is *

* exhausted or connect is successfull. *

Move zero to connect-status.

Perform until ((host-addr-count = host-addr-seq and

host-addr-seq > 0) or

 connect-done)

If host-alias-seq > host-alias-count then

subtract 1 from host-alias-seq

 end-if

move 'EZACIC08' to ezaerror-function

Call 'EZACIC08' using host-entry-addr

 host-name-length

 host-name-value

 host-alias-count

 host-alias-seq

 host-alias-length

 host-alias-value

 host-addr-type

 host-addr-length

 host-addr-count

 host-addr-seq

 host-addr-value

 host-return-code

If host-return-code < 0 then

move host-return-code to retcode

move 'Host translation failed' to ezaerror-text

perform write-ezaerror-msg thru

 write-ezaerror-msg-exit

go to exit-close-socket

 end-if

Move host-addr-value to server-ipaddr

* Try to connect to IMS OTMA Listener on returned IP address *

50 IP IMS Sockets Guide

If host-return-code = 0 then

Move soket-connect to ezaerror-function

Call 'TPIINTOA' using server-ipaddr

 server-ipaddr-dotted

Display 'Trying to connect to server: '

 server-ipaddr-dotted

Call 'EZASOKET' using soket-connect

 socket-descriptor

 server-socket-address

 errno

 retcode

If retcode < 0 then

Move space to ezaerror-text

Call 'TPIINTOA' using server-ipaddr

 ezaerror-text

perform write-ezaerror-msg thru

 write-ezaerror-msg-exit

 else

move 1 to connect-status

 end-if

 end-if

 end-perform.

if retcode < 0 then

move 'Connect failed' to ezaerror-text

perform write-ezaerror-msg thru

 write-ezaerror-msg-exit

Go to exit-close-socket.

Display 'Connected to server at ' server-ipaddr-dotted.

* Send IRM to IMS OTMA listener *

Display 'IRM to IMS Listener: ' IRM-message

move IRM-message to send-buffer

move IRM-len to send-request-len

perform write-tcp thru write-tcp-exit

If send-request-sent < 0 then

Display 'Write of TRM failed'

go to exit-close-socket

 end-if

* Send 2 data segments and an EOM segment to server *

Display 'Sending data segment 1'.

move request-message-seg1 to send-buffer.

move 24 to send-request-len.

perform write-tcp thru write-tcp-exit.

If send-request-sent < 0 then

Display 'Write of segment1 failed'

go to exit-close-socket.

Display 'Sending data segment 2'.

move request-message-seg2 to send-buffer.

 Chapter 4. IMS OTMA Connection Server Sample Programs 51

move 24 to send-request-len.

perform write-tcp thru write-tcp-exit.

If send-request-sent < 0 then

Display 'Write of segment2 failed'

go to exit-close-socket.

Display 'Sending EOM segment'.

move EOM-message to send-buffer.

move 4 to send-request-len.

perform write-tcp thru write-tcp-exit.

If send-request-sent < 0 then

Display 'Write of EOM failed'

go to exit-close-socket.

* Read segments from server *

Display 'Preparing to read response from IMS'.

Perform until (CSM-received or

(RSM-received and not RSM-OK) or

 socket-was-closed)

Move recv-flag-peek to recv-flag

Move 2 to read-request-len

Perform read-tcp thru read-tcp-exit

If read-request-read < 0 then

Display 'Peek for length failed'

go to exit-close-socket

 end-if

move returned-len to read-request-len

move recv-flag-read to recv-flag

move space to read-buffer

perform read-tcp thru read-tcp-exit

if read-request-read < 0 then

Display 'Read failed'

go to exit-close-socket

 end-if

Display 'Received segment = ' returned-message

If RMM-received then

Display 'RMM id=' RMM-id ' Mod-name=' RMM-MODname

 end-if

If RSM-received then

Display 'RSM id=' RSM-id ' Return-code='

 RSM-return-code

' Reason-code=' RSM-reason-code

If not RSM-OK Then

Display 'Transaction not scheduled.'

 end-if

 end-if

If CSM-received then

Display 'CSM id=' CSM-id

 end-if

52 IP IMS Sockets Guide

 end-perform.

 exit-close-socket.

* Close socket *

move soket-close to ezaerror-function

Call 'EZASOKET' using soket-close

 socket-descriptor

 errno

 retcode.

If retcode < 0 then

move 'Close call failed' to ezaerror-text

perform write-ezaerror-msg thru write-ezaerror-msg-exit.

 exit-term-api.

* Terminate socket API *

Call 'EZASOKET' using soket-termapi.

 exit-now.

* Terminate program *

Move zero to return-code.

 Goback.

 write-ezaerror-msg.

 * Subroutine *

 * ---------- *

 * *

* Write out an error message *

move errno to ezaerror-errno.

move retcode to ezaerror-retcode.

 display ezaerror-msg.

 write-ezaerror-msg-exit.

 exit.

 * Subroutine *

 * ---------- *

 * *

* Read data from a TCP socket *

 * *

* Read-request-len tells how many bytes to read. *

 Read-TCP.

move soket-recv to ezaerror-function.

move zero to read-request-read.

move read-request-len to read-request-remaining.

Perform until read-request-remaining = 0

Call 'EZASOKET' using soket-recv

 Chapter 4. IMS OTMA Connection Server Sample Programs 53

 socket-descriptor

 recv-flag

 read-request-remaining

read-buffer-byte(read-request-read + 1)

 errno

 retcode

If retcode < 0 then

move 'Read call failed' to ezaerror-text

perform write-ezaerror-msg thru

 write-ezaerror-msg-exit

move -1 to read-request-read

move zero to read-request-remaining

 else

Display 'Number of bytes read=' retcode

Add retcode to read-request-read

Subtract retcode from read-request-remaining

If retcode = 0 then

Display 'Server probably closed socket'

Move zero to read-request-remaining

Move 1 to close-status

 end-if

 end-if

 end-perform.

 Read-TCP-exit.

 exit.

 * Subroutine *

 * ---------- *

 * *

* Send data over a TCP connection *

 * *

* Send-request-len tells how many bytes to write. *

 Write-TCP.

move soket-write to ezaerror-function.

move send-request-len to send-request-remaining.

move 0 to send-request-sent.

Perform until send-request-remaining = 0

Display 'Writing so many bytes: ' send-request-remaining

Call 'EZASOKET' using soket-write

 socket-descriptor

 send-request-remaining

send-buffer-byte(send-request-sent + 1)

 errno

 retcode

If retcode < 0 then

move 'Write call failed' to ezaerror-text

perform write-ezaerror-msg thru

 write-ezaerror-msg-exit

move -1 to send-request-sent

move zero to send-request-remaining

 else

add retcode to send-request-sent

subtract retcode from send-request-remaining

 end-if

54 IP IMS Sockets Guide

 end-perform.

 Write-TCP-exit.

 exit.

The following output is trace output from a test execution of TPIOTMAC:

Client ID = ALFREDCC 006E1B88

Trying to connect to server: 9.24.104.74

Connected to server at 9.24.104.74

IRM to IMS Listener: *IRMREQ*ESRVI DST18 SOCK001 ALFRED XXXXXXXX

Writing so many bytes: 0000000068

Sending data segment 1

Writing so many bytes: 0000000024

Sending data segment 2

Writing so many bytes: 0000000024

Sending EOM segment

Writing so many bytes: 0000000004

Preparing to read response from IMS

Number of bytes read=0000000002

Number of bytes read=0000000020

Received segment = *REQMOD*ABCO02

RMM id=*REQMOD* Mod-name=ABCO02

Number of bytes read=0000000002

Number of bytes read=0000000032

Received segment = ESRVI Data segment 1

Number of bytes read=0000000002

Number of bytes read=0000000024

Received segment = Data segment 2

Number of bytes read=0000000002

Number of bytes read=0000000012

Received segment = *CSMOKY*

CSM id=*CSMOKY*

TPICPART — IMS OTMA Listener C Client Program
This C program is used to test the IMS server program decsribed in “TPIIMSDP —
Triple-Purpose IMS Server Program” on page 37.

/*--*

* *

* Name: TPICPART - Client to test transaction TPIPART *

* started via IMS OTMA listener. *

* *

* Function: Sends message to server and receives reply. *

* The server program is started via the IMS OTMA *

* Listener. Transaction code is TPIPART. *

* *

* All messages exchanged between client and server *

* are preceeded by a 2 byte binary length field. *

* *

* Client builds an IMS Request Message (IRM) *

* which is send to the IMS OTMA Listener. *

* Data segments are sent and echoed back from *

* the server. *

* Last data segment sent is an EOM message with *

* length field of 4. *

* Client code includes logic to deal with *

 Chapter 4. IMS OTMA Connection Server Sample Programs 55

* Request Status Messages (RSM), Request MOD *

* Messages (RMM), and Completed Status Messages *

* (CSM). *

* *

* Interface: Server host name, port number and part number *

* to query are passed as run-time arguments to *

* this program. *

* *

* Logic: 1. Connect to IMS OTMA Listener *

* 2. Send IMS Request Message (IRM) *

* 3. Send segment with part number to query *

* 4. Send data to be echoed back and EOM segment *

* 5. Receive reply to part database query *

* 6. Receive echoed data *

* 7. Receive Transaction Completed Status *

* Message *

* 8. Close socket and terminate *

* *

* Returncode: - none - *

* *

* Written: March 1997, at ITSO Raleigh *

* *

* Modified: *

* *

--/

/*

 * Include Files.

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <socket.h>

#include <netdb.h>

/*

 * Client Main.

 */

main(int argc, char**argv)

{

 /*

* Transaction Request Message (IRM)

* Sent by us to the IMS listener to

* initiate IMS transaction

 */

struct IRM_message {

unsigned short ll;

unsigned short zz;

 char irmreq [8];

 char trancode [8];

 char datastore [8];

 char lterm [8];

 unsigned long flag;

 char ims_userid [8];

 char ims_password [8];

 } IRM;

 /*

56 IP IMS Sockets Guide

* Request Status Message (RSM)

* May be sent by the IMS Listener

 */

struct RSM_message {

unsigned short ll;

unsigned short zz;

 char id [8];

 unsigned long rc;

 unsigned long reason;

 } RSM;

 /*

* Request MOD Message (RMM)

* May be sent by the IMS Listener if

* application uses MOD name on ISRT calls.

 */

struct RMM_message {

unsigned short ll;

unsigned short zz;

 char rmm_id [8];

 char Mod [8];

 } RMM;

 /*

* Completed Status Message (CSM)

* Sent by the OTMA listener, when

* transaction has completed.

 */

struct CSM_message {

unsigned short ll;

unsigned short zz;

 char csmoky [8];

 } CSM;

 /*

* Segment buffer for receiving data

 */

struct segment_buffer {

unsigned short ll;

unsigned short zz;

 char buf [200];

 } segment;

 /*

* Segment buffer for input segment to IMS

 */

struct input_segment_buffer {

unsigned short ll;

unsigned short zz;

 char partno [15];

 } input_segment;

 /*

* Segment buffer for input segment number two to IMS

 */

struct input_segment_buffer_2 {

unsigned short ll;

unsigned short zz;

 char echo_data [36];

 } input_segment_2;

 /*

* Segment buffer for parts database query reply segment

 */

 Chapter 4. IMS OTMA Connection Server Sample Programs 57

struct output_segment_buffer {

unsigned short ll;

unsigned short zz;

 char partno [15];

 char descr [20];

 char proccode [2];

 char invcode [1];

 char revnbr [2];

 char makedept [2];

 char makecctr [2];

 char commodity [2];

 char status [79];

 } output_segment;

 /*

* Various work fields

 */

unsigned short port; /* port client to connect to */

char buf [200]; /* send receive buffer */

char part [15]; /* part number from PARM field */

unsigned short lenbytes; /* Length field */

struct hostent *hostnm; /* server host name information */

struct sockaddr_in server; /* server address */

int s; /* client socket */

struct clientid ourclientid; /* Client ID structure */

 /*

* Check Arguments Passed. Should be hostname and port and key

 */

if (argc != 4) {

printf("Usage: %s hostname port part-key\n", argv[0]);

 exit(1);

 }

 /*

* The host name is the first argument. Get the server address.

 */

hostnm = gethostbyname(argv[1]);

if (hostnm == (struct hostent *) 0) {

 printf("Gethostbyname failed\n");

 exit(2);

 }

 /*

* The port is the second argument.

 */

port = (unsigned short) atoi(argv[2]);

 /*

* The part number is the third argument

 */

printf("Part number from PARM field is: %s\n", argv[3]);

 strcpy(part,argv[3]);

 /*

* Build the IRM

 */

IRM.ll = htons(56);

IRM.zz = 0;

 strcpy(IRM.irmreq, "*IRMREQ*");

 strcpy(IRM.trancode,"TPIPART ");

 strcpy(IRM.datastore,"DST18 ");

 strcpy(IRM.lterm,"SOCK002 ");

IRM.flag = 0x80000000;

58 IP IMS Sockets Guide

 strcpy(IRM.ims_userid,"ALFRED ");

 strcpy(IRM.ims_password,"NYGAARD ");

 /*

* Put the server information into the server structure.

* The port must be put into network byte order.

 */

 server.sin_family = AF_INET;

 server.sin_port = htons(port);

server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*

* Get a stream socket.

 */

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 tcperror("Socket()");

 exit(3);

 }

printf("Socket sd = %d\n", s);

 /*

* Let us see our Client ID

 */

if (getclientid(AF_INET, &ourclientid) < 0) {

 tcperror("Getclientid()");

 exit(4);

 }

 printf("ClientID Jobname = %.*s\n",

 sizeof(ourclientid.name), ourclientid.name);

printf("ClientID Subtaskname = %.*s\n",

 sizeof(ourclientid.subtaskname), ourclientid.subtaskname);

 /*

* Connect to the server and send IRM

 */

if (connect(s, (struct sockaddr*) &server, sizeof(server)) < 0) {

 tcperror("Connect()");

 exit(4);

 }

 printf("Connected\n");

if (send(s, (char*) &IRM, sizeof(IRM), 0) < 0) {

 tcperror("Send()");

 exit(5);

 }

printf("Send of IRM complete\n");

printf("IRM trancode = %.8s\n", IRM.trancode);

 /*

* Build transaction input_segments and send them

 */

input_segment.ll = htons(sizeof(input_segment));

input_segment.zz = 0;

 memcpy(input_segment.partno, "AN960C10 ", 15);

printf("input_segment.ll=%d - partno=%.15s\n",

 input_segment.ll, input_segment.partno);

if (send(s, (char*) &input_segment,

sizeof(input_segment), 0) < 0) {

tcperror("Send() of input_segment");

 exit(7);

 }

input_segment_2.ll = 40;

input_segment_2.zz = 0;

memcpy(input_segment_2.echo_data, "Some data to echo", 36);

 Chapter 4. IMS OTMA Connection Server Sample Programs 59

if (send(s, (char*) &input_segment_2,

sizeof(input_segment_2), 0) < 0) {

tcperror("Send() of input_segment_2");

 exit(7);

 }

printf("input_segment_2.ll=%d - sent\n", input_segment_2.ll);

printf("Send data complete\n");

 /*

* Send End of Message segment

 */

segment.ll = htons(4);

segment.zz = 0;

if (send(s, (char*) &segment, 4, 0) < 0) {

 tcperror("Send()");

 exit(7);

 }

printf("EOM segment sent\n");

 /*

* Receive first segment into buffer

 */

if (recv(s, (char*) &segment, 4, MSG_PEEK) < 0) {

tcperror("Recv() Peek for 4 bytes");

 exit(6);

 }

lenbytes = ntohs(segment.ll);

printf("Bytes ready to read is %d\n", lenbytes);

if (recv(s, (char*)&segment, lenbytes, 0) < 0) {

 tcperror("Recv()");

 exit(6);

 }

 /*

* Check for an RSM segment

 */

if (!memcmp(segment.buf, "*REQSTS*", 8)) {

memcpy(&RSM, &segment, ntohs(segment.ll));

printf("Receive of RSM complete\n");

RSM.rc = ntohl(RSM.rc);

RSM.reason = ntohl(RSM.reason);

printf("RSM rc = %d\n", RSM.rc);

printf("RSM reason code = %d\n", RSM.reason);

if (RSM.rc > 0) {

printf("Negative response in RSM message - rc=%d\n", RSM.rc);

 exit(12);

 }

if (recv(s, (char*) &segment, 4, MSG_PEEK) < 0) {

tcperror("Recv() Peek for 4 bytes");

 exit(6);

 }

lenbytes = ntohs(segment.ll);

printf("Bytes ready to read is %d\n", lenbytes);

if (recv(s, (char*) &segment, lenbytes, 0) < 0) {

 tcperror("Recv()");

 exit(6);

 }

 }

 /*

* Check for an RMM segment

60 IP IMS Sockets Guide

 */

if (!memcmp(segment.buf, "*REQMOD*", 8)) {

memcpy(&RMM, &segment, ntohs(segment.ll));

printf("Receive of RMM complete\n");

printf("MOD name is = %s\n", RMM.Mod);

if (recv(s, (char*) &segment, 4, MSG_PEEK) < 0) {

tcperror("Recv() Peek for 4 bytes");

 exit(6);

 }

lenbytes = ntohs(segment.ll);

printf("Bytes ready to read is %d\n", lenbytes);

if (recv(s, (char*) &segment, lenbytes, 0) < 0) {

 tcperror("Recv()");

 exit(6);

 }

 }

printf("Full output segment is %s\n", segment.buf);

memcpy(&output_segment, &segment, ntohs(segment.ll));

printf("Output data received\n");

 printf("Partno = %15.15s\n", output_segment.partno);

printf("Descr = %20.20s\n", output_segment.descr);

printf("Proccode = %2.2s\n", output_segment.proccode);

printf("Invcode = %1.1s\n", output_segment.invcode);

 printf("Revnbr = %2.2s\n", output_segment.revnbr);

printf("Makedept = %2.2s\n", output_segment.makedept);

printf("Makecctr = %2.2s\n", output_segment.makecctr);

printf("Commodity = %2.2s\n", output_segment.commodity);

 printf("Status = %79.79s\n", output_segment.status);

 /*

* Receive echo data segment into buffer

 */

if (recv(s, (char*) &segment, 4, MSG_PEEK) < 0) {

tcperror("Recv() Peek for 4 bytes");

 exit(6);

 }

lenbytes = ntohs(segment.ll);

printf("Bytes ready to read is %d\n", lenbytes);

if (recv(s, (char*)&segment, lenbytes, 0) < 0) {

 tcperror("Recv()");

 exit(6);

 }

printf("Full echo segment is %s\n", segment.buf);

 /*

* Receive CSM message

 */

if (recv(s, (char*) &CSM, sizeof(CSM), 0) < 0) {

 tcperror("Recv()");

 exit(6);

 }

printf("recv returned %s\n", CSM.csmoky);

if (!memcmp(CSM.csmoky, "*CSMOKY*", 8)) {

printf("Receive of CSM complete: %s\n", CSM.csmoky);

 }

 /*

* Close the socket.

 */

 close(s);

 Chapter 4. IMS OTMA Connection Server Sample Programs 61

printf("Client Ended Successfully\n");

 exit(0);

}

The following is trace output from a sample execution of TPICPART:

Part number from PARM field is: AN960C10

Socket sd = 3

ClientID Jobname = ALFREDC1

ClientID Subtaskname = 0b413000

Connected

Send of IRM complete

IRM trancode = TPIPART

input_segment.ll=20 - partno=AN960C10

input_segment_2.ll=40 - sent

Send data complete

EOM segment sent

Bytes ready to read is 20

Receive of RMM complete

MOD name is = ABCO02

Bytes ready to read is 150

Full output segment is AN960C10 WASHER 02

Output data received

Partno = AN960C10

Descr = WASHER

Proccode = 02

Invcode =

Revnbr =

Makedept =

Makecctr =

Commodity =

Status =

Bytes ready to read is 40

Full echo segment is Some data to echo

recv returned *CSMOKY*

Receive of CSM complete: *CSMOKY*

Client Ended Successfully

IMSLSECX — IMS BMP and OTMA Listener Security Exit
The following is a sample security exit that works with both the IMS Listener and
the IMS OTMA Connection server.

* *

* Name: IMSLSECX - IMS Sockets Listener security exit. *

* Used by both the IMS BMP listener and *

* the IMS OTMA listener. *

* *

* Function: Validates stream socket connections to IMS. *

* *

* Interface: R1 -> parameter list with eight pointers: *

* +0 -> Fullword IP Address (In) *

* +4 -> Halfword port number (In) *

* +8 -> 8 byte IMS tranaction code name (In) *

* +12 -> Halfword datatype (0, ASCII, 1 EBCDIC) (In) *

* +16 -> Fullword length of user data in TRM (In) *

62 IP IMS Sockets Guide

* +20 -> User data (In) *

* +24 -> Fullword return code (Out) *

* +28 -> Fullword reason code (Out) *

* +32 -> 8 byte return user ID (Out) - only OTMA *

* +36 -> 8 byte return group ID (out) - only OTMA *

* *

* Security exit interface contains user data. User *

* data is installation defined - in our case as 32 *

* bytes with the following layout: *

* *

* 8 bytes user ID *

* 8 bytes password *

* 8 bytes new password (optional) *

* 8 bytes RACF group ID (optinal) *

* *

* Logic: 1. Validates if all required parms are present. *

* 2. Calls TPIRACF for user authentication and build *

* of task level security environment. *

* RACROUTE VERIFY passes an applid. If caller is *

* BMP Listener, it will be BMPLSTN - if caller is *

* OTMA listener, it will be OTMALSTN. *

* 3. Authorizes user's access to requested IMS tran *

* code via call to TPIAUTH for resource class *

* FACILITY and resource TPI.IMSSOCK.trancode *

* 4. Deletes user security environment again and *

* returns to IMS listener *

* *

* Abends: User abend 1001: If RACROUTE REQUEST=DELETE fails, *

* and we do not know if we continue *

* under a user security environment, *

* we abend. *

* User abend 1002: Caller is neither BMP listener nor *

* OTMA listener. *

* *

* Return codes: Return and reason codes set in the IMS listener *

* security exit interface area. *

* RC=000 Reason=000: User authenticated OK and users *

* access to tran code authorized OK.*

* RC=008 Reason=101: UserID and password missing in TRM*

* RC=008 Reason=102: Invalid length of userdata in TRM *

* RC=008 Reason=103: UserID not defined to RACF *

* RC=008 Reason=104: Invalid password *

* RC=008 Reason=105: Password has expired *

* RC=008 Reason=106: New password is not valid *

* RC=008 Reason=107: User does not belong to group *

* RC=008 Reason=108: User is revoked *

* RC=008 Reason=109: Access to group is revoked *

* RC=008 Reason=110: User not authorized to IMS Sockets*

* RC=008 Reason=111: TPIRACF internal error *

* RC=008 Reason=112: TPIRACF internal error *

* RC=008 Reason=113: User not authorized to tran code *

* *

* *

* Written: ITSO, Raleigh April 16, 1995 *

* *

* Modified: ITSO, Raliegh March 18, 1997 - *

* added support for OTMA Listener interface *

* *

 Chapter 4. IMS OTMA Connection Server Sample Programs 63

*

WORKAREA DSECT *Program re-entrant work area

 DC 18F'0' *Save area

STATBYTE DC X'00' *Status bits

OTMACALL EQU BIT0 *Caller is OTMA

BMPCALL EQU BIT1 *Caller is BMP

 DC XL3'00' *Nice allignment

REQCODE DC A(0) *TPIRACF Request Code

REQVER EQU 0 *REQUEST=VERIFY

REQDEL EQU 8 *REQUEST=DELETE

USERID DC CL8' ' *User ID

PWD DC CL8' ' *Password

NPWD DC CL8' ' *New password

GROUP DC CL8' ' *Group ID

APPLNAME DC CL8'IMSLSTN' *Application name (IMSLSTN)

AUTHRC DC A(0) *Saved RC from TPIAUTH

RESNAME DC C'TPI.IMSSOCK.' *Resource TPI.IMSSOCK.trancode

RESTRNNM DC CL8' ' *Trancode

 DC CL(80-(*-RESNAME))' '

DORD DC D'0' *Work area

MACWORK DC 256X'00' *Macro work area

*

INTFAREA DSECT *Interface parm list mappings

LSIPADDR DC A(0) *-> Client IP address

LSPORT DC A(0) *-> Client port number

LSTRNNAM DC A(0) *-> IMS transaction code name

LSDATTYP DC A(0) *-> Datatype (0 ASCII, 1 EBCDIC)

LSDATLEN DC A(0) *-> Length of user data in TRM

LSUSRDAT DC A(0) *-> User data area

LSRETCOD DC A(0) *-> Return code field

LSREACOD DC A(0) *-> Reason code field

LSOTMAU DC A(0) *-> OTMA return user ID <----+

LSOTMAG DC A(0) *-> OTMA return group ID <----+

* !

* Only present if

* caller is OTMA Listener

*

USERDATA DSECT *User data area in TRM or IRM

LSUSERID DC CL8' ' *User ID

LSPWD DC CL8' ' *Password

LSNPWD DC CL8' ' *New Password (Optional)

LSGROUP DC CL8' ' *Group ID (Optional)

*

IMSLSECX INIT 'IMS Sockets Listener security exit',MODE=31, C

 RENT=Y,WORKLEN=512

*

USING WORKAREA,R13 *Base our reentrant work area

 LR R11,R1 *Parameter pointer

WTO 'IMSLSECX - Entered'

USING INTFAREA,R11 *Adressability of parameters

*

* ---

*

* Initialize fields in work area.

*

* ---

*

64 IP IMS Sockets Guide

MVC USERID,=CL8' ' *Initialize values to space

MVC PWD,=CL8' ' *Initialize values to space

MVC NPWD,=CL8' ' *Initialize values to space

MVC GROUP,=CL8' ' *Initialize values to space

XC STATBYTE,STATBYTE *Nice and clean

*

* ---

*

* Determine who caller is. Done by including two weak external

* references in the code: one for EZAIMSLN (BMP Listener) and one

* for EZAIMSO0. Only one of them is resolved, and the one that is

* resolved tells us which of the two listeners we are linked with.

*

* ---

*

ICM R15,15,IMSLN *Is caller BMP Listener ?

 BNZ INITBMP *- Yes

ICM R15,15,IMSO0 *Is caller OTMA Listener ?

 BNZ INITOTMA *- Yes

WTO 'IMSLSECX - Caller is neither BMP nor OTMA Listener'

 ABEND 1002,DUMP

INITBMP EQU *

MVC APPLNAME,=CL8'BMPLSTN' *It is BMP Listener

WTO 'IMSLSECX - Caller is BMP Listener'

OI STATBYTE,BMPCALL *Indicate call from BMP

 B INITAPPL *

INITOTMA EQU *

MVC APPLNAME,=CL8'OTMALSTN' *It is OTMA Listener

WTO 'IMSLSECX - Caller is OTMA Listener'

OI STATBYTE,OTMACALL *Indicate call from OTMA

INITAPPL EQU *

 MVC RESNAME,=C'TPI.IMSSOCK.' *Initialize

*

* ---

*

* Check passed parameters and do any necessary conversion from

* ASCII to EBCDIC.

*

* ---

*

L R2,LSDATLEN *-> Fullword with L'userdata

 L R9,0(R2) *L'userdata

C R9,=A(16) *User ID and Password must be there

BL TOFEWPRM *Too few parameters passed

BE PARMOK *Only userID and password is OK

C R9,=A(24) *Exactly 24 bytes long

BE PARMOK *- is OK - new password

C R9,=A(32) *Or exactly 32 bytes long

BNE LENERR *- is OK, if anything else: error

PARMOK EQU *

L R3,LSDATTYP *-> Halfword with datatype

 L R4,LSUSRDAT *-> Userdata

 LH R9,0(R3) *Datatype

LTR R9,R9 *Is data ASCII ?

BNZ ISEBCDIC *- No, data is EBCDIC

CALL TPITRANS,((R4), *Translate user data area C

 (R2), *This length C

STANDARD, *Use STANDARD table C

 Chapter 4. IMS OTMA Connection Server Sample Programs 65

ATOE),VL, *From ASCII to EBCDIC C

 MF=(E,MACWORK) *

ISEBCDIC EQU *

*

* ---

*

* Build TPIRACF parameters and call TPIRACF to verify user.

*

* ---

*

MVC USERID(32),=CL32' ' *Initialize all parms to space

MVC REQCODE,=A(REQVER) *Issue RACROUTE REQUEST=VERIFY

USING USERDATA,R4 *User data area addressability

MVC USERID,LSUSERID *User ID from TRM

MVC PWD,LSPWD *Password from TRM

 L R9,0(R2) *L'userdata

C R9,=A(16) *Is there a new password ?

BNH DOVER *- No, all parms are set

MVC NPWD,LSNPWD *New password from TRM

C R9,=A(24) *Is there a group ID ?

BNH DOVER *- No, all parms are set

MVC GROUP,LSGROUP *Group ID from TRM

DOVER EQU *

 CALL TPIRACF, * C

 (REQCODE, *RACROUTE REQUEST=VERIFY C

 USERID, * C

 PWD, * C

 NPWD, * C

 GROUP, * C

 APPLNAME),VL, C

 MF=(E,MACWORK)

LTR R15,R15 *Was VERIFY Successful?

BNZ VERFAIL *- No, return error to client.

*

* ---

*

* Build TPIAUTH parameters and call TPIAUTH to test if user is

* authorized to TPI.IMSSOCK.trancode in the FACILITY resource class.

*

* ---

*

L R2,LSTRNNAM *-> IMS Transaction code name

MVC RESTRNNM,0(R2) *Move to FACILITY Class resource nm.

 CALL TPIAUTH, *Authorize call C

 (RESNAME, *Resource name C

AUTHACC),VL, *Test for read access C

 MF=(E,MACWORK)

ST R15,AUTHRC *Save RC for a little later

*

* ---

*

* Delete user security environment again, so we restore address space

* security environment before we return to the IMS Listener.

*

* ---

*

MVC PWD(24),=CL24' ' *Space out unneeded parms

MVC REQCODE,=A(REQDEL) *We want to delete sec. environment

66 IP IMS Sockets Guide

 CALL TPIRACF, * C

 (REQCODE, *RACROUTE REQUEST=DELETE C

 USERID, * C

 PWD, *Space C

 NPWD, *Space C

 GROUP, *Space C

 APPLNAME),VL, C

 MF=(E,MACWORK)

LTR R15,R15 *This should only give RC=0

BZ DELOK *- which it did

MVC MACWORK(WTODELL),WTODEL *Move in WTO skeleton

 LR R9,R15 *Save RC

 CVD R15,DORD *Convert

OI DORD+7,X'0F' *- to something

UNPK MACWORK+WTODELRC(L'WTODELRC),DORD *Readable text

WTO MF=(E,MACWORK) *Tell about it

CH R9,=AL2(253) *Does not leave a security env.

BE DELOK *- which is OK

WTO 'IMSLSECX - User abend 1001 due to above return code'

ABEND 1001,DUMP *Others may leave user sec. active.

DELOK EQU *

ICM R9,B'1111',AUTHRC *Return code from AUTH call

BNZ AUTHFAIL *If not zero, auth failed.

 SR R15,R15 *Set RC=0

SR R10,R10 *- and Reason code=0

* ---

*

* Check to see of caller is BMP listener or OTMA listener.

* If it is OTMA listener, we return the user ID and group ID to

* use in the OTMA headers.

*

* ---

TM STATBYTE,BMPCALL *Was caller BMP Listener?

BO BMPLSTN *- Yes, caller is BMP Listener

L R2,LSOTMAU *-> Here to return OTMA user ID

MVC 0(8,R2),USERID *Use the passed user ID

L R2,LSOTMAG *-> Here to return OTMA Group ID

MVC 0(8,R2),GROUP *This was the passed group ID

WTO 'IMSLSECX - OTMA User ID and Group ID Returned'

BMPLSTN EQU *

WTO 'IMSLSECX - Successfull processing, return to caller'

 B RETURN *And exit

*

* ---

*

* Error exit routines. Set R15 to return code and R10 to

* reason code and go to common exit code.

*

* ---

*

AUTHFAIL EQU * *User is not authorized

LA R10,NOTAUTH *Not authorized to tran code

LA R15,8 *This is an error

 B RETURN *And exit

VERFAIL EQU * *User did not verify successfully

LM R5,R7,RCBXLE *Prepare to set reason code

RCLOOP EQU *

CH R15,0(R5) *This TPIRACF Return code ?

 Chapter 4. IMS OTMA Connection Server Sample Programs 67

BE SETREAS *- Yes, set corresponding reason

BXLE R5,R6,RCLOOP *We use last entry as garbage can

SETREAS EQU *

LH R10,2(R5) *Here is corresponding reason code

LA R15,8 *This is an error

 B RETURN *And exit

TOFEWPRM EQU *

LA R15,8 *This is an error

LA R10,PARMERR1 *To few parameters

 B RETURN *Exit

LENERR EQU *

LA R15,8 *This is an error

 LA R10,PARMERR2 *Wrong length

*

RETURN EQU *

L R2,LSRETCOD *-> Return code field

ST R15,0(R2) *Pass back return code

L R2,LSREACOD *-> Reason code field

ST R10,0(R2) *Pass back reason code

TERM RC=0 *Return to IMS Listener

 LTORG

*

* ---

*

* Macro list forms and work constants

*

* ---

*

* Reason codes

*

PARMERR1 EQU 101 *At least user ID and password req.

PARMERR2 EQU 102 *Length must be 16, 24 or 32.

NOTAUTH EQU 113 *User not authorized to trancode

*

RCBXLE DC A(START,4,LAST) *TPIRACF RC to Reason code convert.

START DC AL2(4,103) *User ID not defined to RACF

 DC AL2(8,104) *Invalid password

DC AL2(12,105) *Password has expired

DC AL2(16,106) *New password is not valid

DC AL2(20,107) *User ID does not belong to group

DC AL2(24,108) *User ID is revoked

DC AL2(28,109) *Access to group is revoked

DC AL2(32,110) *User ID is not authorized to appl

 DC AL2(254,111) *Internal error

LAST DC AL2(255,112) *Some other error

*

AUTHACC DC CL8'READ' *We want read access

*

STANDARD DC CL8'STANDARD' *Standard translate table

ATOE DC CL4'ATOE' *From ASCII to EBCDIC

*

WTODEL WTO 'IMSLSECX - RACROUTE REQUEST=DELETE Gave RC=xxxx', C

 MF=L

WTODELL EQU *-WTODEL

WTODELRC EQU 48,4

*

IMSLN DC V(EZAIMSLN) *The BMP Listener

IMSO0 DC V(EZAIMSO0) *The OTMA Listener

68 IP IMS Sockets Guide

WXTRN EZAIMSO0,EZAIMSLN *Force these two to be weak refs.

*

 END

 Chapter 4. IMS OTMA Connection Server Sample Programs 69

70 IP IMS Sockets Guide

Part 3. Using The IMS Listener

Chapter 5. Principles of Operation . 77
Overview . 77

The Role of the IMS Listener . 77
The Role of the IMS Assist Module . 77

Use of the IMS Assist Module — Pros and Cons 78
Client/Server Logic Flow . 78

How the Connection is Established . 78
How the Server Exchanges Data with the Client 80

Explicit-Mode Transactions . 80
Implicit-Mode Transactions . 82

How the IMS Listener Manages Multiple Connection Requests 84
Use of the IMS Message Queue . 84

Input Messages. . 84
Output Messages. . 84

Call Sequence for the IMS Listener . 85
Application Design Considerations . 86
Programs That Are Not Started by the IMS Listener 86
When the Client is an IMS MPP . 86
Abend Processing . 86

True Abends . 86
Pseudo Abends . 87

Implicit-Mode Support for ROLB Processing 87
Restrictions . 87

Chapter 6. How to Write an IMS TCP/IP Client Program 89
Client Program Logic Flow — General . 89
Explicit-Mode Client Program Logic Flow . 89

Explicit-Mode Client Call Sequence . 90
Explicit-Mode Application Data . 90

Format . 90
Data Translation . 90
Network Byte Order . 90
End-of-Message Indicator . 91

Implicit-Mode Client Logic Flow . 91
Implicit-Mode Client Call Sequence . 91
Implicit Mode Application Data Stream . 92

Client-to-Server Data Stream . 92
Server-to-Client Data Stream . 92

Implicit-Mode Application Data . 92
Format . 92
Data Translation . 93
End-of-Message Segment . 93

IMS TCP/IP Message Segment Formats . 93
Transaction-Request Message Segment (Client to Listener) 94
Request-Status Message Segment . 94

Request-Status Message Reason Codes 94
Complete-Status Message Segment . 95
End-of-Message Segment (EOM) . 95

PL/I Coding . 95

 Copyright IBM Corp. 1994, 1997 71

Chapter 7. How to Write an IMS TCP/IP Server Program 97
Server Program Logic Flow —General . 97
Explicit-Mode Server Program Logic Flow . 97

Explicit-Mode Call Sequence . 97
Explicit-Mode Application Data . 98

Format . 99
EBCDIC/ASCII Data Translation . 99

Transaction-Initiation Message Segment . 99
Program Design Considerations . 100
I/O PCB — Explicit-Mode Server . 100

Status Codes . 100
Explicit-Mode Server — PL/I Programming Considerations 100

Implicit-Mode Server Program Logic Flow . 100
Implicit-Mode Server Call Sequence . 101
Implicit-Mode Application Data . 101

Format . 101
Data Translation . 101
End-of-Message Segment . 102

Programming to the Assist Module Interface 102
Implicit-Mode Server PL/I Programming Considerations 103
Implicit-Mode Server C Language Programming Considerations 103
I/O PCB Implicit-Mode Server . 103

Status Codes . 103

Chapter 8. How to Customize and Operate the IMS Listener 105
How to Start the IMS Listener . 105
How to Stop the IMS Listener . 106
The IMS Listener Configuration File . 106

TCPIP Statement . 106
LISTENER Statement . 107
TRANSACTION Statement . 107

The IMS Listener Security Exit . 108
TCP/IP for MVS Definitions . 109

The hlq.PROFILE.TCPIP Data Set . 109
The hlq.TCPIP.DATA Data Set . 110

Chapter 9. CALL Instruction Application Programming Interface (API) . 113
Call Formats . 113

COBOL language call format . 113
Assembler language call format . 113
PL/I language call format . 114

Programming Language Conversions . 114
Error Messages and Return Codes . 115
CALL Instructions for Assembler, PL/.I, and COBOL Programs 115

ACCEPT . 115
Parameter Values Set by the Application 116
Parameter Values Returned to the Application 116

BIND . 117
Parameter Values Set by the Application 117
Parameter Values Returned to the Application 118

CLOSE . 118
Parameter Values Returned to the Application 119
Parameter Values Set by the Application 119

CONNECT . 119

72 IP IMS Sockets Guide

Stream Sockets . 119
UDP Sockets . 119
Parameter Values Set by the Application 120
Parameter Values Returned to the Application 121

FCNTL . 121
Parameter Values Set by the Application 121
Parameter Values Returned to the Application 122

GETCLIENTID . 122
Parameter Values Set by the Application 123
Parameter Values Returned to the Application 123

GETHOSTBYADDR . 123
Parameter Values Set by the Application 124
Parameter Values Returned to the Application 124

GETHOSTBYNAME . 125
Parameter Values Set by the Application 125
Parameter Values Returned to the Application 126

GETHOSTID . 127
GETHOSTNAME . 127

Parameter Values Set by the Application 127
Parameter Values Returned to the Application 128

GETIBMOPT . 128
Parameter Values Set by the Application 129
Parameter Values Returned by the Application 129

GETPEERNAME . 130
Parameter Values Set by the Application 131
Parameter Values Returned to the Application 131

GETSOCKNAME . 131
Parameter Values Set by the Application 132
Parameter Values Returned to the Application 132

GETSOCKOPT . 132
Parameter Values Set by the Application 133
Parameter Values Returned to the Application 134

GIVESOCKET . 135
Parameter Values Set by the Application 136
Parameter Values Returned to the Application 137

INITAPI . 137
Parameter Values Set by the Application 138
Parameter Values Returned to the Application 138

IOCTL . 139
Parameter Values Set by the Application 139
Parameter Values Returned to the Application 142

LISTEN . 142
Parameter Values Set by the Application 143
Parameter Values Returned to the Application 143

READ . 143
Parameter Values Set by the Application 144
Parameter Values Returned to the Application 144

READV . 144
Parameter Values Set by the Application 145
Parameter Values Returned to the Application 145

RECV . 146
Parameter Values Set by the Application 146
Parameter Values Returned to the Application 147

RECVFROM . 147

 Part 3. Using The IMS Listener 73

Parameter Values Set by the Application 148
Parameter Values Returned to the Application 148

RECVMSG . 149
Parameter Values Set by the Application 151
Parameter Values Returned by the Application 152

SELECT . 152
Defining Which Sockets to Test . 152
Read Operations . 153
Write Operations . 153
Exception Operations . 153
MAXSOC Parameter . 153
TIMEOUT Parameter . 154
Parameter Values Set by the Application 154
Parameter Values Returned to the Application 155

SELECTEX . 156
Parameter Values Set by the Application 156
Parameter Values Returned by the Application 157

SEND . 158
Parameter Values Set by the Application 158
Parameter Values Returned to the Application 159

SENDMSG . 159
Parameter Values Set by the Application 161
Parameter Values Returned by the Application 162

SENDTO . 162
Parameter Values Set by the Application 163
Parameter Values Returned to the Application 163

SETSOCKOPT . 164
Parameter Values Set by the Application 164
Parameter Values Returned to the Application 166

SHUTDOWN . 166
Parameter Values Set by the Application 166
Parameter Values Returned to the Application 167

SOCKET . 167
Parameter Values Set by the Application 167
Parameter Values Returned to the Application 168

TAKESOCKET . 168
Parameter Values Set by the Application 169
Parameter Values Returned to the Application 169

TERMAPI . 169
Parameter Values Set by the Application 170

WRITE . 170
Parameter Values Set by the Application 170
Parameter Values Returned to the Application 170

WRITEV . 171
Parameter Values Set by the Application 171
Parameters Returned by the Application 172

Data Translation Programs for the Socket Call Interface 172
Data Translation . 172
Bit String Processing . 172
EZACIC04 . 172
EZACIC05 . 173
EZACIC06 . 173
EZACIC08 . 175

74 IP IMS Sockets Guide

Chapter 10. IMS Listener Samples . 179
IMS TCP/IP Control Statements . 179

JCL for Linking an Implicit-Mode Server . 179
JCL for Linking an Explicit-Mode Server . 179
JCL for Starting a Message Processing Region 180
JCL for Linking the IMS Listener . 180

EZAIMSCZ JCLIN . 180
EZAIMSPL JCLIN . 181

Listener IMS Definitions . 182
PSB Definition . 182
Application Definition . 182

Sample Program Explicit-Mode . 182
Program Flow . 182
Sample Explicit-Mode Client Program (C Language) 183
Sample Explicit-Mode Server Program (Assembler Language) 185

Sample Program Implicit-Mode . 191
Program flow . 191
Sample Implicit-Mode Client Program (C Language) 192
Sample Implicit-Mode Server Program (Assembler Language) 195

Sample Program—IMS MPP Client . 199
Program Flow . 199
Sample Client Program for Non-IMS server 199
Sample Server Program for IMS MPP Client 208

WTO output from sample program . 218

 Part 3. Using The IMS Listener 75

76 IP IMS Sockets Guide

Chapter 5. Principles of Operation

This chapter describes the operation of the Listener and the Assist module. Its
purpose is to explain how a TCP/IP-to-IMS connection is established, and how the
client and server exchange application data. For specific data formats and the
socket protocols used when coding a TCP/IP client or server, see Chapter 6, “How
to Write an IMS TCP/IP Client Program” on page 89 and Chapter 7, “How to Write
an IMS TCP/IP Server Program” on page 97.

 Overview
The IMS TCP/IP feature consists of 3 components: the IMS Listener, the IMS
Assist module, and the Sockets Extended API. 8

The Sockets Extended API can either be used independently, or with the other 2
components. When the Sockets Extended interface is used independently, an IMS
MPP can either serve as a client or as a server.

When the IMS Listener is used, the IMS MPP acts as a server , and the TCP/IP
remote acts as the client . The Assist module is dependent upon the IMS Listener;
therefore, when the Assist module is used, IMS is the server.

Because the Listener and the Assist module are designed to support IMS as a
server, the next several chapters are based on that assumption. For a discussion of
IMS as client , see “When the Client is an IMS MPP” on page 86, later in this
chapter, and the sample program on “Sample Program—IMS MPP Client” on
page 199.

The Role of the IMS Listener
Since the IMS Transaction Manager does not support direct connection with
TCP/IP, some other program must establish that connection. When IMS is acting as
a server to a TCP/IP-connected client , that program is the IMS Listener — an IMS
batch message program (BMP) whose main function it is to establish connection
between the client and the requested IMS transaction.

When the client requests the services of an IMS message processing program
(MPP), it sends a message to the IMS host containing the transaction code of that
MPP. The IMS Listener receives that request and schedules the requested MPP; it
then holds the connection until the MPP starts and accepts the connection. Once
the MPP owns the connection, the Listener is no longer involved with it.

The Role of the IMS Assist Module
The IMS Assist module is a subroutine, called from an IMS MPP (server) that trans-
lates conventional IMS communication calls into the corresponding socket calls. Its
use is optional. Its purpose is to shield the programmer from having to understand
TCP/IP programming. To exchange data with the client, the server program issues
traditional IMS message queue calls (GU, GN, ISRT). These calls are intercepted
by the Assist module, which issues the appropriate socket calls.

8 Shipped with the TCP/IP for MVS base product

 Copyright IBM Corp. 1994, 1997 77

Use of the IMS Assist Module — Pros and Cons
The Assist module makes message processing program (MPP) coding easier, but
is accompanied by a series of trade-offs. This section discusses the trade-offs
between implicit mode and explicit mode.

¹ Implicit-mode application programmers use conventional IMS Transaction
Manager (TM) calls and require no special training; explicit-mode application
programmers must understand TCP/IP socket calls and protocols.

¹ Implicit-mode transactions must adhere to constraints imposed by the IMS
Assist module. By contrast, explicit-mode transactions use the TCP/IP socket
call interface and have no specific protocol requirements other than the orderly
initiation and termination of the transaction.

¹ Implicit-mode transactions obtain their message input from the IMS message
queue. Since the Listener must put the input message segments on the queue
before the server begins execution, the client sends all application data with the
transaction request. Explicit-mode transactions bypass the message queue for
all application data — both input, and output.

¹ Implicit-mode transactions are limited to a single GU-GN/ISRT iteration (one
input of one or more segments, followed by one output of one or more seg-
ments) for each message retrieved from the IMS message queue. By contrast,
explicit-mode transactions have no such limit. Unlimited read/write sequences
make it possible to design conversations in which the two programs talk back
and forth without limit.9

Client/Server Logic Flow
The following section describes the flow of a client/server application through the
system — starting with the client and continuing on through the Listener to the
server. The complete transaction, including initiation, execution, and termination is
traced.

How the Connection is Established
The following paragraphs describe the functions the Listener performs in coordi-
nating between the client and the server. With the exception of paragraph 6, the
Listener performs the same steps for both explicit- and implicit-mode servers. Para-
graph numbers correspond to the step numbers in Figure 1.

 1. Connection request

The IMS Listener is an IMS batch message processing program (BMP). When
the Listener starts, it establishes a socket on which it can “listen” for connection
requests. It binds itself to the specified port, and then listens for requests from
TCP/IP clients. When a client sends a connection request, MVS TCP/IP notifies
the Listener of the request.

 2. Connection processing

When the Listener receives a connection request, it issues a socket ACCEPT
call, which creates a new socket specifically for that connection.

9 Because of the potential for long running conversations, MPPs with multiple conversational iterations should be carefully designed
to avoid the possibility of extended message processing region occupancy.

78 IP IMS Sockets Guide

IMS Message
Queue

Server

Connection
Request

Client

1

IMS Transaction Manager

MVS TCP/IP

IMS Listener

accept()

listen()

read TRM

verify transaction

ISRT TIM

read()
ISRT

givesocket()

SYNC

6*

5

4

3

2

1

client data}

7

8

*implicit-mode only

Figure 8. IMS TCP/IP Message Flow for Transaction Initiation

 3. Transaction-Request Message

The client then sends a transaction-request message (TRM) segment, which
includes the 8-byte name of the requested IMS server transaction (otherwise
known as the TRANCODE).

 4. Transaction verification

The Listener performs several tests to ensure that the requested transaction
should be accepted:

¹ The TRANCODE is tested against IMS Listener configuration file TRANS-
ACTION statements to ensure that the requested transaction is eligible to
be executed from a TCP/IP client.

 Chapter 5. Principles of Operation 79

¹ If security data is included in the transaction-request message (TRM), that
data is passed to a user-written security exit. The purpose of this exit is to
validate the credentials of the client prior to allowing the transaction to be
scheduled.

¹ The Listener issues an IMS CHNG call to a modifiable alternate PCB, spec-
ifying the TRANCODE of the desired transaction. It then issues an IMS
INQY call to ensure that the transaction is not stopped (due to previous
abend or Master Terminal Operator action).

 The following actions depend on the results of the verification:

¹ If the transaction request is rejected, the IMS Listener returns a request-
status message (RSM) segment to the client with an indication of the
reason for rejecting the request; it then closes the connection.

¹ If the transaction request is accepted the requested transaction is sched-
uled (the Listener does not return a status message to the client).

5. Transaction Initiation Message (TIM)

The Listener then inserts (ISRT) a transaction initiation message (TIM) segment
to the IMS message queue. This message contains information needed by the
server program when it takes responsibility for the connection. (Note that the
client sends the transaction request message (TRM) to the Listener; the Lis-
tener sends the transaction initiation message (TIM) to the server.)

6. Client-to-server input data transfer (implicit mode only)

If the transaction is in implicit mode, the Listener reads the client-to-server input
data and places it on the message queue.

7. Pass the socket to the server

Next, the Listener issues a GIVESOCKET call, which makes the socket avail-
able to the server program.

8. Schedule the transaction

Finally, the Listener issues an IMS SYNC call to schedule the requested IMS
transaction and waits for the server program to take responsibility for the con-
nection.

When the server issues a TAKESOCKET call, the Listener has completed its
responsibility for the socket and dissociates itself from the connection.

Note: The Listener is a never-ending IMS Batch Message Program, which proc-
esses multiple concurrent transactions.

How the Server Exchanges Data with the Client
Once the server begins execution, the protocol to pass input data to the server is a
function of whether the transaction mode is explicit or implicit.

 Explicit-Mode Transactions
The following section describes an explicit-mode server program which exchanges
application data with a client.

Step numbers in Figure 2 correspond to the paragraph numbers below.

1. Once an explicit-mode server begins execution, it issues an IMS GU call to
obtain the transaction initiation message (TIM) segment, an INITAPI to estab-

80 IP IMS Sockets Guide

IMS Message
Queue

Server

Client

IMS Transaction Manager

MVS TCP/IP

IMS Listener

2

3

4

1

GU TIM

takesocket()

read()

write()

read()

write()

database calls

GU TIM

close()

Figure 9. IMS TCP/IP Message Flow for Explicit-Mode Input/Output

lish connection with MVS TCP/IP, and a TAKESOCKET call to establish direct
connection between client and server.

2. Subsequently, socket READ and WRITE commands are used to exchange data
between client and server. The conversation can consist of any number of
database calls and socket READ/WRITE exchanges.10 Client data is not
passed through the IMS message queue and is not subject to any predefined
protocols.

10 Because of the potential for long running conversations, MPPs with multiple conversational iterations should be carefully designed
to avoid the possibility of extended message processing region occupancy.

 Chapter 5. Principles of Operation 81

3. The transaction indicates completion by issuing another GU to the I/O PCB.
This notifies the Transaction Manager that the database changes should be
committed. At this point, the server program might send a message to the client
indicating that the database changes have been successfully completed.

If another message awaits this transaction, the GU will cause the first segment
of that message to be retrieved and the program should issue a new
TAKESOCKET call to start the process again.

4. When the GU call returns with a QC status code, the server ends the conversa-
tion by closing the socket.

 Implicit-Mode Transactions
The following section describes how the Assist module and the server program
interact to exchange application data with the client. The paragraph numbers corre-
spond to the step numbers in Figure 3.

 1. Server GU

GU must be the first IMS call issued by the server to the I/O PCB. The Assist
module retrieves the first segment from the message queue and examines it
(for *LISTNR* in the first field) to determine whether it is a transaction initiation
message. (If the message was not sent by the Listener, the Assist module
assumes the transaction was started by an SNA terminal and immediately
passes the input segment to the server. In this case, subsequent I/O PCB calls
(as well as database calls) are passed directly through to IMS without further
consideration.)

2. Transaction Initiation Message (TIM)

If the message was sent by the Listener, the initial message segment is the
transaction initiation message (TIM); the Assist module does not return it to the
server. Instead, the Assist module uses the TIM contents to issue the
TAKESOCKET to establish connection between the client and the server
program.

3. Server input data

Once the server owns the socket, the Assist module issues a GN to retrieve
the first segment of the client input message and returns it to the server
program. Thus, the server program never sees the TIM; it receives the first data
segment in response to its GU. Subsequent GN calls from the server cause the
Assist module to retrieve the remaining segments of the message. When the
Assist module reads the last input segment for that transaction from the
message queue, it receives a QD status code from IMS, which it returns to the
server program.

After the initial GU to the I/O PCB, server GN calls, ISRT calls, and database
calls can be intermixed.

4. Server output data

When the server program issues ISRT calls to send output message segments
to the client, the IMS Assist module accumulates the output segments, up to
maximum of 32KB, into a buffer.

 5. Commit

The server signals completion by issuing a GU to the I/O PCB.

6. TCP/IP writes application data to the client.

82 IP IMS Sockets Guide

IMS
Message
Queue

Server

Client

IMSTM

MVS TCP/IP

Database calls and
I/O PCB calls can be
intermixed

IMS
Listener

Assist Module

GU TIM
takesocket()

GN appl data 1

GN appl data 2

GN appl data 3

accumulate output data

write() appl data 1

write() appl data 2

write() appl data 3

GU TIM

write() CSMOKY

close

GU IOPCB

GN IOPCB

GN IOPCB

ISRT IOPCB

ISRT IOPCB

ISRT IOPCB

GU IOPCB

*

1 2

3

4

5
6

7

8

*

Figure 10. IMS TCP/IP Message Flow for Implicit Mode Input/Output

When the server issues the GU, the Assist module issues WRITE calls to send
the data to the client and passes the GU to the IMS Transaction Manager to
commit the database changes.

 7. Confirmation

If the GU is successful, (that is, QC status or spaces) the Assist module sends
a complete-status message segment (CSM) to the client to confirm the suc-
cessful commit and passes the status code back to the server.

8. Close the socket

Once the complete-status message has been sent to the client, the Assist
module closes the socket, ending the connection.

 Chapter 5. Principles of Operation 83

If the GU in the previous step resulted in a 'bb' status code (indicating suc-
cessful return of another message) the program logic returns to step 2 to
process the new message.

How the IMS Listener Manages Multiple Connection Requests
The IMS Listener uses 2 queues for the management of connection requests:

1. The backlog queue (managed by MVS TCP/IP) contains client connection
requests that have not yet been accepted by the Listener. If a client requests a
connection while the backlog queue is full, TCP/IP rejects the connection
request. The number of requests allowed in the backlog queue is specified in
the LISTENER startup configuration statement (BACKLOG parameter), see
“LISTENER Statement” on page 107.

2. The active sockets queue contains the sockets that are held by the Listener
while they wait for assignment to a server program. Once the Listener has
accepted the connection, the connection belongs to the Listener until it is
accepted by the server. If the Listener uses all of its sockets and cannot accept
any more connections, subsequent requests go into the backlog queue. The
maximum number of sockets available is specified in the LISTENER startup
configuration statement, (MAXACTSKT parameter), see “LISTENER Statement”
on page 107.

Use of the IMS Message Queue
In conventional 3270 applications, the IMS message queue is a mechanism for
passing communications between an MPP and another entity, such as a 3270-type
terminal, or another message processing program (MPP). The IMS TCP/IP feature
uses the message queue for communication between the Listener and the MPP.
Messages from and to TCP/IP hosts bypass IMS message format services (MFS).
The following section describes how IMS TCP/IP uses the IMS message queue:

 Input Messages.
(Messages that are input to the MPP)

¹ Explicit-mode transactions only use the message queue to pass the transaction
initiation message (TIM) from the Listener to the server. All application data
sent by the client is received by the server using sockets READ calls, thus
bypassing the IMS message queue.

¹ Implicit-mode transactions use the message queue both for the TIM (which is
trapped by the Assist module and not passed on to the server) and for all
client-to-server application data (which is passed to the server in response to
IMS GU, GN calls).

 Output Messages.
All messages that are output from the server go directly via TCP/IP to the client;
they do not pass through the message queue.

¹ Explicit-mode servers use socket WRITE calls to send application data directly
to the client.

¹ Implicit-mode servers use the IMS ISRT call for output, but the inserted data is
trapped by the Assist module which, in turn, issues socket WRITE calls to send
the data to the client.

84 IP IMS Sockets Guide

Call Sequence for the IMS Listener
Although you will probably not be writing a Listener program, it is important that you
match the sequence of calls issued by the Listener when you write your client
program. The Listener call sequence is:

Call Explanation of Function

INITIALIZE LISTENER

INITAPI Connect the Listener to MVS TCP/IP at Listener startup.
(This call is only used in programs written to the Sockets
Extended interface.

SOCKET Create a socket descriptor.

BIND Allocate the local port for the socket. This port is used by
clients when requesting connection to IMS.

LISTEN Create a queue for incoming connections.

WAIT FOR CONNECTION REQUEST

SELECT Wait for an incoming connection request.

ACCEPT Accept the incoming connection request; create a new socket
descriptor to be used by the server for this specific con-
nection.

READ Read TRM; determine the IMS TRANCODE.

CHNG Change the modifiable alternate PCB to reflect the desired
IMS TRANCODE.

INQY Ensure the desired IMS TRANCODE is available for sched-
uling.

ISRT Use the alternate PCB to insert the transaction initiation
message (TIM) and pass control information and user input
data to the server.

GIVESOCKET Pass the newly created socket to the server.

SYNC Schedule the requested transaction.

SELECT Wait for the server to take the socket

CLOSE Release the socket.

END OF CONNECTION REQUEST

Return to "WAIT FOR CONNECTION REQUEST"

SHUTDOWN LISTENER

CLOSE Close the socket through which the Listener receives con-
nection requests from MVS TCP/IP.

TERMAPI Disconnect the Listener from MVS TCP/IP before shutting
down

 Chapter 5. Principles of Operation 85

Application Design Considerations
The following is a set of guidelines and limitations that should be considered when
designing IMP TCP/IP applications.

Programs That Are Not Started by the IMS Listener
It is expected that, in most cases, IMS server applications will be started by the
IMS Listener. Such programs are known as dependent programs because the Lis-
tener establishes the TCP/IP connection.

Under some circumstances, application design considerations require that an appli-
cation establish its own connection between TCP/IP and IMS. For example, an IMS
MPP might require the services of a TCP/IP-connected UNIX processor.

An IMS application of this type is known as an independent program because it is
not started by the Listener. Because independent programs don't use Listener ser-
vices, they must define their own protocol.

When the Client is an IMS MPP
In this manual, the underlying assumption is that the TCP/IP host acts as client and
the IMS MPP acts as server. However, this is not always the case.

For example, consider an IMS MPP that requires the services of a
TCP/IP-connected AIX* host. Such an MPP (acting as a client) initiates a TCP/IP
conversation by issuing the client TCP/IP call sequence. The TCP/IP host would
respond with the server TCP/IP call sequence. This application design is sup-
ported because the MPP communicates directly with MVS TCP/IP. The IMS TCP/IP
feature does not impose any unique restrictions on the type and usage of socket
calls executed by such a program; however, because of the unique and unstruc-
tured communication requirements of this application design, you must use explicit
mode for this type of program.

 Abend Processing
When a task that owns a socket fails, MVS TCP/IP closes the socket. Therefore,
when an IMS MPP abends, regardless of the reason, the socket is no longer avail-
able and communication between server and client is no longer possible.

 True Abends
If an IMS TCP/IP server program abends (for example, because of an S0Cx condi-
tion), database changes in progress are backed out and the transaction task is ter-
minated. This breaks the TCP/IP connection. When the connection is broken, the
client receives a negative status code and an error number that indicates that the
connection has been broken. Upon receipt of this indication, the client should
assume that the transaction did not complete and that the database changes have
not been made. The client could reschedule the transaction, but the IMS TM will
have probably “stopped” it from further execution as a result of the abend.

The solution is to correct the reason for the abend and restart the transaction.

86 IP IMS Sockets Guide

 Pseudo Abends
Under certain situations IMS applications cannot complete. Upon such a condition,
IMS abends the MPR with a status code (usually U0777, U02478, U02479, or
U03303) and reschedules it. This action is not apparent to the conventional
3270-type user.

However, when an IMS TCP/IP transaction is pseudo-abended, the action is
apparent to the client because the connection between client and server is lost
when the server MPR is abended. In this case, IMS TM reschedules the transaction
and places the input message (including the TIM) back on the message queue.
When the transaction is rescheduled and issues a GU for the TIM, the socket
described in the TIM no longer represents a valid connection. and the associated
TAKESOCKET call will fail. At this time, the Assist module will detect the failure of
the socket call and return a ZZ status code to the server program. Upon receipt of
this status code, the server program should end normally.

Note: At the time of the pseudo-abend, the IMS TM backs out database changes,
so the client should restart the transaction.

An Alternative: As an alternative, for deadlock situations it is suggested that you
define the transaction as INIT STATUS GROUP B, which allows the appli-
cation program to regain control after a deadlock with a BC status code
(instead of terminating with a U0777 abend). This allows the server program
to regain control after the deadlock and notify the client while the connection
is still available.

Implicit-Mode Support for ROLB Processing
If a server program issues the IMS ROLB call, all database changes are reversed,
and all output messages are erased from the IMS message queue. However, the
client is not automatically notified of this action and will (when the transaction com-
pletes normally) receive a CSMOKY message, indicating normal completion.

As a result, for transactions that conditionally issue the ROLB call, it is recom-
mended that the server send a message to the client indicating whether the ROLB
command was executed. Otherwise, the client might incorrectly interpret the
CSMOKY message to mean that database changes have been made (when in fact,
the message simply denotes successful termination of the transaction).

 Restrictions
¹ Transactions must be defined as MODE=SNGL in the IMS TRANSACT macro;

this will ensure that the database buffers are emptied (flushed) to direct access
storage when the second and subsequent GU calls are issued.

¹ Transactions must not reference other systems (MSC is not supported).

¹ Transactions must not be conversational (that is, they must not use the IMS
Scratch Pad Area (SPA)).

 Chapter 5. Principles of Operation 87

88 IP IMS Sockets Guide

Chapter 6. How to Write an IMS TCP/IP Client Program

When writing an IMS TCP/IP client program, the programmer must follow con-
ventions established by the IMS Listener and by the IMS Assist module (if used).
This chapter describes the call sequences and input/output data formats to be used
by the client program. For server programming, see Chapter 7, “How to Write an
IMS TCP/IP Server Program” on page 97.

 Note that, in the context of this chapter, a “client” is typically a TCP/IP host that is
requesting the services of an IMS message processing program (MPP). This is
considered to be the normal case. However, in some situations, an MPP can start
as a server and then (because it needs the services of another program) switch
roles from server to client.

In this chapter, the client will be assumed to be the TCP/IP host and the server, the
IMS MPP.

Client Program Logic Flow — General
For both explicit- and implicit-mode clients the logic flow is essentially the same:

The client initiates the request for a specific IMS MPP server by communicating
with MVS TCP/IP, which passes the request on to the IMS Listener. The Listener
schedules the transaction and the client then exchanges application data with the
server. When the transaction is complete, the connection is closed; each client
request for an IMS transaction requires a new TCP/IP connection.

The following two sections provide more details about the programming require-
ments for explicit-mode and implicit-mode clients, respectively.

Explicit-Mode Client Program Logic Flow
When the client requests the services of an explicit-mode server, the only protocol
imposed by IMS TCP/IP is that the client must begin by establishing TCP/IP
connectivity and sending a transaction-request message (TRM).

The Listener uses contents of the transaction-request message (TRM) to determine
which transaction to schedule. If the request is not accepted (for example, because
of failure to pass the security exit, or because the transaction was stopped by the
IMS master terminal operator), the Listener returns a request-status message
(RSM) to the client with an indication of the cause of failure. (See “Request-Status
Message Segment” on page 94 for the format of the request-status message).

Once an explicit-mode client and server are in communication, there is no prede-
fined input/output protocol. Rules of the conversation are established by agreement
between the two programs. Any number of READ/WRITE calls can be issued.
Upon termination, the server program should commit any database changes, notify
the server of successful completion, and close the socket.

It is suggested that, when all database updates have been committed, the server
notify the client by sending a “success” message to the client. This notifies the
client that the transaction has completed properly and that all database updates

 Copyright IBM Corp. 1994, 1997 89

have been committed. Unless such a message is sent, the client has no way of
knowing that the transaction completed properly.

Explicit-Mode Client Call Sequence
The call sequence to be used by an explicit-mode client program is:

Call Explanation of Function

INITAPI Open the interface. (Only required for client programs that
use MVS TCP/IP socket calls).

SOCKET Obtain a socket descriptor.

CONNECT Request connection to the IMS Listener port.

WRITE Send a transaction-request message (TRM)

READ Test for successful transaction initiation11

WRITE/READ Explicit-mode transactions can issue any number of READ or
WRITE socket call sequences.

READ Ensure that the server ended normally and that the database
changes are committed.

CLOSE Terminate the connection and release socket resources.

Explicit-Mode Application Data

 Format
Explicit-mode clients must initiate the connection with the server by sending the
transaction-request message (TRM) to the IMS host. The format of this message is
defined later in this chapter. Explicit-mode application data is formatted according to
agreement between client and server. Explicit-mode imposes no application data
format requirements.

 Data Translation
In explicit-mode, application data translation from ASCII to EBCDIC (if necessary) is
the responsibility of the client and server programs. Data is not translated by the
IMS TCP/IP feature.

Network Byte Order
Fixed-point binary integers (used for segment lengths in TRM and RSM) are speci-
fied using the TCP/IP network byte ordering convention (big-endian notation). This
means that if the high-order byte is stored at address n, the low-order byte is stored
at address n+1. (Little-endian notation stores the other way around).

MVS also uses the big-endian convention. Because this is the same as the network
convention, IMS TCP/IP MPP's should not need to convert data from little-endian to
big-endian notation. If the client uses little-endian notation, it is responsible for the
conversion.

11 If the Listener is unable to initiate the transaction, it sends a request-status message (RSM) to the client indicating the reason for
failure. Therefore, the client must be prepared to receive that message. It is suggested that a convention be established that the
server initiate the conversation by sending an opening message. By following this convention, the client will receive either positive
or negative notification of transaction status before initiating application data exchange.

90 IP IMS Sockets Guide

 End-of-Message Indicator
IMS TCP/IP does not define an End-of-message indicator for explicit-mode mes-
sages.

Implicit-Mode Client Logic Flow
When the client requests the services of an implicit-mode client, the protocol is pre-
defined by IMS TCP/IP.

The client requests an IMS MPP by sending the transaction-request message
(TRM). (See “Transaction-Request Message Segment (Client to Listener)” on
page 94 for the format of the TRM.) The TRM includes the name of the transaction
the Listener is to schedule.

If the transaction cannot be scheduled (for example, because of failure to pass the
security exit, or because the transaction was stopped by the IMS master terminal
operator), the Listener returns the request-status message with an indication of the
cause of failure. (See “Request-Status Message Segment” on page 94 for the
format of the request-status message).

For implicit-mode applications, the input data stream consists of the TRM, imme-
diately followed by all segments of application data and an end-of message-
segment. The Listener uses the TRM contents to schedule the server and then
places the TIM and all of the application data on the IMS message queue for
retrieval by the Assist module.

Implicit-mode transactions are limited to one multisegment input message and one
multisegment output message. In other words, implicit-mode applications cannot
enter into conversations.

When the transaction is complete, the IMS Assist module sends a complete-status
message (CSMOKY) segment to the client. If the client recieves this message, the
client can safely assume that the database changes have been committed. If the
client doesn't receive this message, the client cannot determine what has hap-
pened. The transaction may have completed normally and database changes com-
mitted, or the transaction may have failed with database changes backed out. For
this reason, clients that work with implicit mode servers should include application
logic that, upon failure to receive the CSMOKY message segment, re-establishes
contact with IMS and confirms the success of the previously submitted update.

Implicit-Mode Client Call Sequence
The call sequence to be used by an implicit-mode client program is:

Call Explanation of Function

INITAPI Open the interface. (Only required for client programs that
use MVS TCP/IP Sockets calls).

SOCKET Obtain a socket descriptor.

CONNECT Request connection to the IMS Listener port.

WRITE Send a transaction-request message (TRM).

WRITE Send server input data formatted as IMS segments

 Chapter 6. How to Write an IMS TCP/IP Client Program 91

READ Receive response.

¹ If the request was rejected, a request-status message
(RSM) will be received.

¹ If the transaction was scheduled and executed properly,
application data will be received.

Thus, logic in the client must test the output message for the
characters *REQSTS* to distinguish between application data
and a request-status message (RSM).

READ Upon successful completion of the database updates, the
Assist module sends a complete-status message
(*CSMOKY*) to the client, indicating that the transaction has
completed successfully.

If this message is not received, the client must assume that
the application failed to complete properly; in this case, a
return code of –1 and ERRNO (typically set to 54) will indi-
cate that application failed. The client must take whatever
action is appropriate (for example, reschedule the trans-
action, resynchronize data).

CLOSE Terminate the connection and release the socket resources

Implicit Mode Application Data Stream

Client-to-Server Data Stream
In implicit mode, the client sends the following data stream:

llzz transaction-request message (TRM) llzz application data segment 1 llzz appli-
cation data segment 2 (optional) llzz ... llzz application data segment n (optional)
04zz end-of-message segment

WHERE:

ll is the length in bytes of this data segment in binary.

Server-to-Client Data Stream
Data received by the client is formatted (by the Assist module) as above. It consists
of n segments of application data including the CSM segment, followed by an end-
of-message segment.

Implicit-Mode Application Data

 Format
Data exchanged between implicit-mode client and server is transmitted in a format
that resembles an IMS message segment. These segments have the following
format: 12

12 This example uses Assembler language notation. See Chapter 7 for COBOL and PL/I equivalents.

92 IP IMS Sockets Guide

Field Format Description

H Length of the data
segment (including
this field)

Reserved (zz) CL2 Reserved field

Data CLn Client-supplied data

The length field contains the total length of the message in binary. The length (ll)
includes the length of the ll and zz fields.

 Data Translation
The IMS Listener tests the initial input data string (the TRM) to determine whether
the terminal is transmitting in ASCII. If the terminal is transmitting in ASCII, and the
transaction is defined as implicit -mode in the TRANSACTION configuration state-
ment, the Listener translates the ASCII application data into EBCDIC. Note that
when data translation takes place, the entire application data portion of the
segment is translated from ASCII to EBCDIC, and vice versa; therefore, the
segment should contain only printable characters that are common to both char-
acter sets. (For example, the EBCDIC cent sign and the ASCII left square bracket
are both printable in their respective native environments, but they are not trans-
lated because they do not have an equivalent in the other character set.)

 End-of-Message Segment
The last segment in a message (either sent by the client, or received from the
server) is indicated by an end-of-message (EOM) segment. (See “End-of-Message
Segment (EOM)” on page 95).

¹ Implicit-mode messages sent by the client are received by the Listener. When
the client program sends an EOM segment, the Listener interprets the EOM as
an indication that no more message segments are to be received and inserts
the segments onto the IMS message queue.

¹ Implicit-mode messages received by the client are actually written by the Assist
module on behalf of the server program. When the server program sends appli-
cation data to the client (using the ISRT call), the Assist module intercepts the
output data and accumulates it in an output buffer. When the server program
issues a subsequent GU to the I/O PCB, the Assist module interprets the GU
as an indication that the server has inserted the last segment for that message.
The Assist module then adds an end-of-message segment to the output data
and issues WRITE commands, which transmit the data to the client. (The client
program should test for the EOM segment to determine when the last segment
of the message has been sent by the server program.)

IMS TCP/IP Message Segment Formats
The client sends or receives several types of message segments whose formats
are defined by the Listener and the Assist module.

¹ Transaction-request message segment (TRM)
¹ Request-status message segment (RSM)
¹ Complete-status message segment (CSMOKY)
¹ End-of-message segment (EOM)

The following paragraphs describe the formats for each of these segments:

 Chapter 6. How to Write an IMS TCP/IP Client Program 93

Transaction-Request Message Segment (Client to Listener)
To initiate a connection with an IMS server, the client first issues a transaction-
request message segment (TRM), which tells the Listener which transaction to
schedule.

The format of the transaction-request message segment (TRM) is:

Field Format Meaning

TRMLen H Length of the segment (in binary) including this field. This field is
sent in network byte order.

TRMRsv CL2 Reserved

TRMId CL8 Identifying string. Always *TRNREQ*. If the client data stream will be
sent in ASCII, the TRMId field should also be transmitted in ASCII
because the Listener uses this field to determine whether ASCII to
EBCDIC translation is required.

TRMTrnCod CL8 The transaction code (TRANCODE) of the IMS transaction to be
started. It must not begin with a / character; it must follow the
naming rules for IMS transactions. If the Listener has determined
that data will be transmitted in ASCII, it translates the transaction
code to EBCDIC before any further processing is done.

TRMUsrDat XLn This variable-length field contains client data that is passed directly
to the security exit without translation.

Request-Status Message Segment
If a transaction request is accepted, the IMS Listener does not send the request-
status message segment; if the transaction request is rejected, the IMS Listener
sends a request-status message segment (RSM) to the client. This segment has
the following format:

Field Format Description

RSMLen H Length of message (in binary), including this field.

RSMRsv CL2 Reserved

RSMId CL8 Identifying string. Always *REQSTS*. This field is translated to ASCII
if the Listener has determined that the client is transmitting in ASCII.

F Return code, sent in network byte order. Set to nonzero (for
example, 4, 8, 12) to indicate an error. The nonzero value is further
explained by the reason code (RSMRsnCod).

RSMRsnCod F Reason Code, sent in network byte order. Reason codes 0 — 100
are reserved for use by the IMS Listener. Codes greater than 100
can be assigned by the user-written security exit.

Request-Status Message Reason Codes
If the IMS Listener sends a request-status message (RSM) segment to the client
(indicating that it is unable to complete the processing of the client's transaction-
request message (TRM), it sets the return and reason code in the RSM.

¹ If the security exit rejects a transaction request, it sets the return code and
reason code, and returns control to the Listener, which sends the request-
status message segment to the client.

94 IP IMS Sockets Guide

¹ If the Listener detects other errors that cause a request to be rejected, it sets a
return code of 8 and a reason code from the following list.

1 The transaction was not defined to the IMS Listener.

2 An IMS error occurred and the transaction was unable to be started.

3 The transaction failed to perform the TAKESOCKET call within the 3
minute timeframe.

4 The input buffer is full as the client has sent more than 32KB of data
for an implicit transaction.

5 An AIB error occurred when the IMS Listener tried to confirm if the
transaction was available to be started.

6 The transaction is not defined to IMS or is unavailable to be started.

7 The transaction-request message (TRM) segment was not in the
correct format.

100 up Reason codes of 100 or higher are defined by the user-supplied
security exit.

Complete-Status Message Segment
The complete-status message segment is sent by the Assist module to indicate the
successful completion of an implicit-mode transaction, including the fact that data-
base updates have been committed. The format of the complete-status message
segment is:

Field Format Description

H Length of data segment (in binary) including this field

CSMRsv H Reserved field; must be set to zero.

CSMId CL8 *CSMOKY* This field is translated to ASCII if the client is transmit-
ting in ASCII.

End-of-Message Segment (EOM)
The end-of-message segment is defined as an IMS-type segment (with llzz fields)
but no application data. Thus, the EOM segment has an llzz field of '0400'; 04 is
the length of the llzz field.

 PL/I Coding
PL/I programmers should note that (although the segments exchanged between the
Listener and implicit-mode servers resemble IMS segments) the segments are actu-
ally sent by TCP/IP socket calls and do not necessarily follow the standard IMS
convention for the PL/I language interface. Specifically, the length field in a
segment (TRM or RSM), which is passed via a TCP/IP socket call, must be a
halfword (FIXED BIN(15)) and not a fullword.

 Chapter 6. How to Write an IMS TCP/IP Client Program 95

96 IP IMS Sockets Guide

Chapter 7. How to Write an IMS TCP/IP Server Program

When writing an IMS TCP/IP server program, the programmer must follow con-
ventions established by the IMS Listener; by the IMS Assist module (if the server
program uses it); and by the TCP/IP client. This chapter describes the call
sequences and input/output formats necessary for communication between a
TCP/IP client program and an IMS server program. (See Chapter 6, “How to Write
an IMS TCP/IP Client Program” on page 89 for a discussion of client program-
ming).

Server Program Logic Flow —General
An IMS TCP/IP server program is executed in response to a transaction request
from a TCP/IP host. The server program can either explicitly issue TCP/IP socket
calls, or implicitly issue them through the IMS Assist module. However, the same
TCP/IP functions are completed in either case.

The following sections describe the server logic flow for each mode.

Explicit-Mode Server Program Logic Flow
When an explicit-mode server begins execution, the Listener has received the
transaction-request message (TRM) from the client and has inserted the
transaction-initiation message (TIM) to the IMS message queue. The Listener has
also issued a GIVESOCKET call to pass the connection to the server.

The server's first action is to obtain the TIM from the IMS message queue. This
message contains the information needed to issue the INITAPI and TAKESOCKET
calls.

Once the server has issued the TAKESOCKET call, the connection is between
client and server; the two can now communicate directly using socket
READ/WRITE calls. The number of reads/writes, and the format of the data
exchanged, is determined by agreement between the two programs.

At the end of processing a client's request, the application program should follow
the IMS DC programming standard of issuing another GU to the IO/PCB. This
informs IMS that the database changes should be committed, and that the data-
base buffers should be emptied (flushed).

Note: For this reason, a transaction invoked by a TCP/IP client should be defined
(by the IMS-gen TRANSACT macro) as MODE=SNGL.

Explicit-Mode Call Sequence
The suggested call sequence for an explicit-mode server follows. See Chapter 9,
“CALL Instruction Application Programming Interface (API)” on page 113 for the
call syntax of the socket calls.

Server call Explanation of Function

CALL CBLTDLI (GU) I/O PCB Obtain transaction-initiation message (TIM) from
IMS message queue.

 Copyright IBM Corp. 1994, 1997 97

INITAPI Initialize the connection with TCP/IP.

Parameter Meaning

ADSNAME Server address space
(TIMSrvAddrSpc from
the TIM)

SUBTASK Server task ID
(TIMSrvTaskID from
the TIM)

TCPNAME TCP address space
(TIMTCPAddrSpc
from the TIM)

TAKESOCKET Accept the socket from the Listener.

Parameter Meaning

CLIENT.name Listener address
space
(TIMLstAddrSpc from
the TIM)

CLIENT.task Listener task ID
(TIMLstTaskID from
the TIM)

SOCRECV Socket descriptor
(TIMSktDesc from the
TIM)

Note that the TAKESOCKET call returns a new
socket descriptor which must be used for the rest
of the process. (Do not continue to use the
descriptor passed by the Listener in TIMSktDesc.)

READ/WRITE Exchange application data with the client.

Database calls Read/write database records.

Note: TCP/IP and database calls can be inter-
mixed.

GU Force IMS synchronization point; update the data-
base from the buffers.

WRITE Send complete-status message to the client.

CLOSE Shut down the socket and release resources
associated with it.

TERMAPI End processing on the call interface.

Explicit-Mode Application Data

98 IP IMS Sockets Guide

 Format
Other than the initial transaction-initiation message, explicit-mode imposes no
restrictions on the format of application data exchanged between client and server.

EBCDIC/ASCII Data Translation
If the TCP/IP host is transmitting ASCII data, explicit-mode servers are responsible
for data translation from EBCDIC to ASCII, and vice versa. Data translation is not
performed by IMS TCP/IP. (The data translation subroutines (EZACIC04 and
EZACIC05), described in Chapter 9, “CALL Instruction Application Programming
Interface (API)” on page 113 can be used for this purpose.)

When the conversation is complete, the server should force an IMS commit and
close the connection. This causes IMS to complete the database updates. Explicit-
mode server logic is responsible for notifying the client of the success or failure of
the commit process.

Transaction-Initiation Message Segment
Once the server has been started, the first segment it receives from the message
queue is the transaction-initiation message (TIM) segment, which was created by
the IMS Listener.

Field Format Explanation

TIMLen 13 H The length of the transaction-initiation message segment (in binary) ,
including the length of this field. (X'0038')

TIMRsv H Reserved field set to zero. (X'0000').

TIMId CL8 Identifies the message as having been created by the IMS Listener.
Always contains the characters *LISTNR*.

TIMLstAddrSpc CL8 Listener address space name. Used in server TAKESOCKET.

TIMLstTaskId CL8 Listener task ID. Used in server TAKESOCKET.

TIMSrvAddrSpc CL8 Server address space name. Used in server INITAPI. Server
address space IDs are generated by the Listener and consist of the
2-character prefix specified in the Listener configuration file (Listener
statement) followed by a unique 6-character hexadecimal number.

TIMSrvTaskID CL8 Server task ID. Used in server INITAPI.

TIMSktDesc H Contains the descriptor of the socket given by Listener. Used in
server TAKESOCKET.

TIMTCPAddrSpc CL8 The TCP/IP address space name of TCP/IP. Used in INITAPI.

TIMDataType H Indicates the data type of the client messages: ASCII(0) or
EBCDIC(1).

13 If you use PL/I, you must define the LLLL field as a binary fullword.

 Chapter 7. How to Write an IMS TCP/IP Server Program 99

Program Design Considerations
¹ Because MVS TCP/IP ends the connection when a server MPP completes, the

client has no way of knowing that the database changes have been committed.
Therefore, it is suggested that explicit-mode servers send a message to the
client confirming the COMMIT before terminating. (Implicit-mode servers send
the CSMOKY segment when the database changes have been committed.)

¹ When an explicit-mode server issues a ROLB command, the client has no auto-
matic way of knowing that the database updates have been rolled back. It is
suggested, therefore, that the server send a message to the client when a
rollback call completes.

I/O PCB — Explicit-Mode Server
When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS
returns information about the results of the call in a control block called the I/O
program control block (I/O PCB). The contents of the I/O PCB are:

LTERM NAME Blanks (8 bytes)

RESERVED X'00' (2 bytes)

STATUS CODE See below (2 bytes)

DATE/TIME Undefined (8 bytes)

INPUT MSG. SEQ. # Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME Blanks (8 bytes)

USERID PSBname of Listener (8 bytes)

 Status Codes
The I/O PCB status code is set by IMS in response to the server GU for the TIM. A
status code of bb indicates successful completion of the GU call. Since the only
data explicit-mode servers receive from the message queue is the TIM, the only
call issued by the server is a GU, requesting a new TIM. Thus, the only status
codes an explicit-mode server should receive are bb, which indicates successful
completion of the GU; and QC, which indicates that there are no more messages on
the message queue for that transaction. In response to the QC status code, the
server program should end normally.

Explicit-Mode Server — PL/I Programming Considerations
PL/I programmers should note that I/O areas used to retrieve IMS segments must
follow standard IMS conventions. That is, the length field for the TIM segment must
be defined as a fullword (FIXED BIN(31)).

Implicit-Mode Server Program Logic Flow
An implicit-mode server must perform all of the functions previously described for
an explicit-mode server (see “Explicit-Mode Server Program Logic Flow” on
page 97). However, the IMS Assist module issues the TCP/IP calls on behalf of the
server program; consequently, the implicit-mode application programmer need only
issue standard IMS Input/Output calls.

100 IP IMS Sockets Guide

Implicit-Mode Server Call Sequence
When writing an implicit-mode program, you must call the IMS Assist module
(CBLADLI, PLIADLI, ASMADLI, CADLI, as appropriate for the language you are
using) instead of the conventional IMS equivalent (CBLTDLI, PLITDLI, ASMTDLI,
CTDLI). This will cause the I/O PCB calls to be intercepted and processed (if nec-
essary) by the Assist module. The Assist module will pass database calls directly to
IMS for processing; it will intercept I/O PCB calls and issue the appropriate sockets
calls. A sample call sequence (using COBOL syntax) for an implicit-mode server
follows:

IMS Server Call Resulting Assist Module Function

CALL CBLADLI (GU) I/O PCB Issue CALL CBLTDLI (GU) to obtain the (TIM).

CALL CBLADLI (GN) I/O PCB (optional) Issue CALL CBLTDLI (GN), which
returns a subsequent segment of client input data
for each call.

CALL CBLADLI 14 Read/write database records. 15

CALL CBLADLI (ISRT) I/O PCB Store segments in the sockets output buffer.

CALL CBLADLI (GU) I/O PCB Issue WRITE to empty output buffers.

Implicit-Mode Application Data

 Format
All data exchanged between the client and an implicit-mode server is formatted into
IMS segments. Each data segment has the following format:

Field Format Description

H Length of the data segment (in binary) including this field.

Reserved H Reserved field; must be set to zero.

Data CLn Application data.

 Data Translation
Translation of input data (when necessary) is done by the Listener. As a result, all
data on the IMS message queue is in EBCDIC; output data is translated (when
necessary) by the Assist module.

Note that when data translation takes place, the entire application data portion of
the segment is translated from ASCII to EBCDIC, and vice versa; therefore, the
segment should contain only printable characters common to both character sets.
(For example, the EBCDIC cent sign and the ASCII left bracket are both printable
in their respective environments but are not translated because they do not have an
equivalent in the other character set.)

14 For database I/O, you can use either CBLTDLI or CBLADLI. The Assist module simply converts database calls from CBLADLI to
CBLTDLI.

15 Database PCB and I/O PCB calls can be intermixed.

 Chapter 7. How to Write an IMS TCP/IP Server Program 101

 End-of-Message Segment
The last segment in a message (either sent by the client, or received from the
server) is indicated by an end-of-message (EOM) segment. (See “End-of-Message
Segment (EOM)” on page 95).

¹ Implicit-mode messages sent by the client are received by the Listener and
inserted onto the IMS message queue. The end-of-message segment (defined
above) indicates to the Listener that there are no more segments to be inserted
for this message. (Note that the server program will not receive the EOM
segment; it will receive a QD status code, indicating that there are no more
segments for this message.)

¹ Implicit-mode messages to be sent by the server are actually written by the
Assist module on behalf of the server program. When the server program
sends application data to the client (using the ISRT call), the Assist module
intercepts the output data and accumulates it in an output buffer. When the
server program issues a subsequent GU to the I/O PCB, the Assist module
interprets the GU as an indication that the server has inserted the last segment
for that message. The Assist module then adds an end-of-message segment to
the output data and issues WRITE commands, which transmit the data to the
client. (Note that the server program should not attempt to insert an EOM
segment to the I/O PCB.)

Programming to the Assist Module Interface
Programs written to the Assist module interface are very similar (in terms of I/O
calls) to conventional IMS Transaction Manager (TM) MPPs.

¹ To communicate with IMS TM, use the following calls (depending upon pro-
gramming language) — CBLADLI, PLIADLI, ASMADLI, or CADLI — instead of
CBLTDLI, PLITDLI, ASMTDLI, and CADLI, respectively.

¹ Use the same parameters as with the IMS TM counterparts.

¹ The first IMS call to the I/O PCB must be GU. Subsequent IMS calls to the I/O
PCB can be GN and/or ISRT (with intervening database calls, as appropriate).

¹ When the transaction is complete, the server program should issue another GU
to the I/O PCB to finalize processing of the present message. If the server
program receives a bb status code, (indicating another message has been
received for that program), it should loop back and process that message. Note
that the Assist module will have closed the previous connection and opened a
new connection associated with the new message. When the GU returns a QC
status code, no more messages have been received for that program and the
program should end.

A set of one GU, one or more GN calls, and one or more ISRT calls to the I/O
PCB (with intervening database calls, as required) constitute a transaction. The
Assist module interprets each GU as the start of a new transaction.

¹ The PURG call cannot be used to indicate end-of-message; the server should
not issue PURG calls to the I/O PCB.

¹ The Assist module GU reads the TIM into the I/O area defined in the server
program; consequently, the I/O area you define in the server must be at least
56 bytes in length (the length of the TIM).

102 IP IMS Sockets Guide

¹ If the server program attempts to insert more than 32KB, the Assist module
flags this as an error by terminating processing and returning a status code of
ZZ.

Implicit-Mode Server PL/I Programming Considerations
PL/I programmers should note that I/O areas passed to the Assist module must
follow standard IMS conventions. That is, the length field for a segment must be
defined as a fullword (FIXED BIN(31)). This applies to both input and output data
segments; however, the actual segment that is received from and sent to the client
uses a halfword (FIXED BIN(15)) length field. Thus, the messages exchanged
between the client and server are programming-language independent.

Implicit-Mode Server C Language Programming Considerations
The following statements are required in IMS implicit-mode servers written in C
language:

 #pragma runopts(env(IMS),plist(IMS))

#pragma linkage(cadli, OS)

This is in addition to the standard requirements for using C language programs in
IMS.

I/O PCB Implicit-Mode Server
When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS
returns information about the results of the call in a control block called the I/O
program control block (I/O PCB). When using the Assist module, the contents of
the I/O PCB are:

LTERM NAME Blanks (8 bytes)

RESERVED See below (2 bytes)

STATUS CODE See below (2 bytes)

DATE/TIME Undefined (8 bytes)

INPUT MSG. SEQ. # Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME Blanks (8 bytes)

USERID PSBname of Listener (8 bytes)

 Status Codes
The I/O PCB status code is set by IMS in response to the IMS calls that the Assist
module makes on behalf of the server. For example, GU and GN calls usually
result in bb, QC, or QD status codes. However, when the Assist module detects a
TCP/IP error, it sets the status code field of the I/O PCB to ZZ with further informa-
tion about the error in the reserved field of thE I/O PCB. This field should be ini-
tially tested as a signed, fixed binary halfword:

¹ If the halfword is positive, then a socket error has occurred, and the field
should continue to be treated as a signed fixed binary halfword. The field con-
tains the 2 low-order bytes from the ERRNO resulting from the socket call. (See
Appendix A, “Return Codes” on page 221).

 Chapter 7. How to Write an IMS TCP/IP Server Program 103

¹ If the halfword is negative, then an IMS or other type of error has occurred, and
the field should be treated as a fixed-length, 2-byte character string containing
one of the following:

Code Meaning

EA A call that used the AIB interface to determine the I/O PCB address
failed.

EB The output buffer is full. An attempt was made to insert (ISRT) more
than 32KB (including the segment length and reserved bytes) to be
sent to the client.

EC A QD status code was received in response to a GU or ROLB call
when attempting to retrieve the first segment of data after the
transaction-initiation message (TIM) segment. This implies that the
client sent only the TIM segment followed by an end-of-message
segment with no actual data segments.

104 IP IMS Sockets Guide

Chapter 8. How to Customize and Operate the IMS Listener

The IMS Listener is an IMS batch message program (BMP) whose main purpose is
to validate connection requests from TCP/IP clients and to schedule IMS message
processing programs (MPP) servers.

This chapter describes the IMS Listener and the user-written security exit that can
be used to validate incoming transaction requests.

How to Start the IMS Listener
The IMS Listener is executed as an MVS 'started task' using job control language
(JCL) statements. Copy the sample job in the hlq.SEZAINST(EZAIMSJL) to your
system or recognized PROCLIB and modify it to suit your conditions. Below is a
sample of the JCL needed for the Listener BMP. Note the STEPLIB statements
pointing to MVS TCP/IP. Also note the EZAIMSJL G.LSTNCFG DD statement points to
the Listener configuration file. For more information on configuring the IMS Listener,
see “The IMS Listener Configuration File” on page 106.

.*

//EZAIMSJL PROC MBR=EZAIMSLN,PSB=EZAIMSLN,IMSID=IMS,CFG=TCPIMS,SOUT=A

//*

//LISTENER EXEC PROC=IMSBATCH,MBR=&MBR,SOUT=&SOUT,IMSID=&IMSID,

// PSB=&PSB,CPUTIME=1440

//G.STEPLIB DD DSN=IMSVS31.&SYS2.RESLIB,DISP=SHR

// DD DSN=IMSVS31.&SYS2.PGMLIB,DISP=SHR

// DD DSN=TCPIP.SEZALINK,DISP=SHR

// DD DSN=TCPIP.SEZATCP,DISP=SHR

//G.LSTNCFG DD DSN=TCPIP.LSTNCFG(&CFG.),DISP=SHR

//G.SYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=137,RECFM=VBA,BLKSIZE=1374),

// SPACE=(141,(2500,100),RLSE,,ROUND)

Figure 11. Sample JCL for Starting the IMS Listener

Once you have configured your JCL, you can start the Listener using the MVS
START command. The basic syntax and parameters of this command are given
below.

55─ ─START─ ──procname ──┬ ┬───────────── ────────────────────────────────────5%
└ ┘──.identifier

procname
The name of the cataloged procedure that defines the IMS Listener job to be
started.

identifier
A user-determined name which, with the procedure name, (procname) uniquely
identifies the started job. This name can be up to 8 characters long with the
first character being alphabetic. If the identifier is omitted, MVS automatically
uses the procedure name as the identifier.

 Copyright IBM Corp. 1994, 1997 105

How to Stop the IMS Listener
The Listener is normally ended by issuing an MVS MODIFY command. The syntax
of this command and a description of the parameters is given below.

55─ ─MODIFY─ ── ──┬ ┬─────────── identifier ─,──STOP───────────────────────────5%
└ ┘──procname.

procname
The name of the cataloged procedure that was used to start the Listener. This
is only required if an identifier that was different from procname was specified
with the START command when the Listener was started.

identifier
The user-determined identifier used on the START command when the Listener
was started. If an explicit identifier was not specified (on the START command),
MVS automatically uses the procedure name (procname) on the START
command as the default identifier.

stop
Stops the Listener.

On receipt of a MODIFY command, the Listener closes the socket bound to the
listening port so that no new requests can be accepted. It ends once all other
sockets have been closed following acceptance of each socket by the corre-
sponding server.

As a BMP, the Listener can be forcibly ended by issuing the IMS STOP REGION
command with the ABDUMP option.

The IMS Listener Configuration File
The IMS Listener obtains startup parameters from a configuration file. In Figure 11
on page 105, the EZAIMSJL G.LSTNCFG DD statement points to the Listener config-
uration file. This statement will be in the JCL sample you customize.

The configuration file contains three types of statements which must appear in the
following order:

 1. TCPIP statement
 2. LISTENER statement
 3. TRANSACTION statements

The following describes each of the configuration statements and their respective
parameters.

 TCPIP Statement
Description: This statement is required and is used to specify the name of the
TCP/IP address space.

55──TCPIP──ADDRSPC=name──5%

106 IP IMS Sockets Guide

ADDRSPC= name
Specifies the name of the TCP/IP address space. The name can be 1 to 8
characters long, consisting of the numbers 0–9, the letters A–Z, and the char-
acters $, @, and #.

 LISTENER Statement
 Description: This statement is required. It is used to specify configuration infor-
mation used by the IMS Listener.

55──LISTENER──PORT=port──MAXTRANS=maxtrans──MAXACTSKT=maxskt──────────────5

 ┌ ┐─BACKLOG=10──────
5─ ─ADDRSPCPFX=prefix─ ──┼ ┼───────────────── ───────────────────────────────5%
 └ ┘─BACKLOG=backlog─

PORT= port
Port number that the Listener binds to for connection requests. Use an integer
between 0 and 65 535, inclusive.

MAXTRANS= maxtrans
The maximum number of TRANSACTION statements to be processed in the
configuration file. Use an integer between 1 and 32 767, inclusive.

MAXACTSKT= maxskt
The maximum number of sockets the Listener can have open awaiting an MPP
TAKESOCKET at one time. This value is an integer from 1 to 2000, inclusive.
The number includes the socket bound to the port through which it accepts
incoming requests.

ADDRSPCPFX= prefix
One or two characters (consisting of the numbers 0–9, the letters A–Z, and the
characters $, @, and #) used in generating unique identifiers for started IMS
transactions.

BACKLOG= backlog
This parameter is optional and is used to specify the length of the backlog
queue maintained in TCP/IP for connection requests that have not yet been
assigned sockets by the Listener. Use an unsigned number from 1 to 32 767
inclusive. The default value is 10.

 TRANSACTION Statement
Description: This statement specifies which transactions can be started by the
Listener. One statement is required for each transaction that can be initiated by a
TCP/IP-connected client.

Note that the transactions named here are subject to limitations:

¹ They must be defined to IMS as MODE=SNGL in the IMS TRANSACT macro;
this will ensure that the database buffers are emptied (flushed) to direct access
storage when the second and subsequent GU calls are issued.

¹ They must not be IMS conversational transactions.

¹ They cannot name transactions that are executed in a remote Multiple Systems
Coupling (MSC) environment.

¹ They must not use Message Format Services for messages to the client.

 Chapter 8. How to Customize and Operate the IMS Listener 107

55──TRANSACTION──NAME=transid──TYPE=─ ──┬ ┬─EXPLICIT─ ──────────────────────5%
 └ ┘─IMPLICIT─

NAME= transid
The name of an IMS transaction that is designed to interact with a
TCP/IP-connected program. This parameter must be 1 to 8 characters long,
containing alphanumeric characters, or the characters @, $, and #.

TYPE=
This parameter specifies whether the transaction uses the IMS Assist module.
It must specify either EXPLICIT or IMPLICIT.

The IMS Listener Security Exit
The IMS Listener includes an exit (IMSLSECX), which can be programmed by the
user to perform a security check on the incoming transaction-request. This Listener
exit can be designed to validate the contents of the UserData field in the trans-
action request message.

To use the user-supplied security exit, you must define an entry point named
IMSLSECX. If a module with this name is link-edited with the Listener (EZAIMSLN)
load module, the security exit is called as part of transaction verification. The secu-
rity exit is called using standard MVS linkage with register 1 (R1) pointing to the
parameter list (described below). Note that the security exit must have the attribute
AMODE(31).

The exit returns 2 indicators: a return code and a reason code. The Listener uses
the return code to determine whether to honor the request. Both the return code
and the reason code are passed back to the client. Data passed in the UserData
field is not translated from ASCII to EBCDIC; this translation is the responsibility of
the security exit. (EZACIC05 and EZACIC04 can be used to accomplish translation
between ASCII and EBCDIC. See the chapter on CALL instructions in OS/390
eNetwork Communications Server: IP API Guide (SC31-8516) for a description of
these utilities.)

The format of the data passed to the security exit is:

108 IP IMS Sockets Guide

Field Format Description

IpAddr F The address of a fullword containing the client's IP
address.

Port H The address of a halfword containing the client's port
number.

TransNam CL8 The address of an 8-character string defining the name
of the requested transaction.

DataType H The address of a halfword containing the data type (0 if
ASCII or 1 if EBCDIC).

DataLen F The address of a fullword containing the length of the
user data.

Userdata XLn The address of the user-supplied data.

RetnCode F The address of a fullword set by the security exit to indi-
cate the return status. Set to nonzero (4, 8, 12, ...) to
indicate an error.

ReasnCode F The address of a fullword set by the security exit as a
reason code associated with the value of the return
code. Reason codes 0–100 are reserved for use by the
Listener. The security exit can use reason codes greater
than 100.

TCP/IP for MVS Definitions
To run IMS, you need to modify the tcpip.PROFILE.TCPIP data set and the
hlq.TCPIP.DATA 16

data set that are part of the TCP/IP for MVS configuration file.

The hlq.PROFILE.TCPIP Data Set
You define the IMS socket Listener to TCP/IP on MVS in the hlq.PROFILE.TCPIP
data set. In it, you must provide entries for the IMS socket Listener started task
name in the PORT statement, as shown in Figure 12 on page 110.

 The format for the PORT statement is:

55──port_number──TCP──IMS_socket_Listener_jobname────────────────────────5%

As an example, assume you want to define two different IMS control regions.
Create a different line for each port that you want to reserve. Figure 12 on
page 110 shows 2 entries, allocating port number 4000 for SERVA, and port
number 4001 for SERVB. SERVA and SERVB are the names of the IMS socket
Listener started task names.

These 2 entries reserve port 4000 for exclusive use by SERVA and port 4001 for
exclusive use by SERVB. The Listener transactions for SERVA and SERVB should
be bound to ports 4000 and 4001 respectively. Other applications that want to
access TCP/IP on MVS are prevented from using these ports.

16 In this book, the abbreviation hlq stands for an installation-dependent high level qualifier which you must supply.

 Chapter 8. How to Customize and Operate the IMS Listener 109

Ports that are not defined in the PORT statement can be used by any application,
including SERVA and SERVB if they need other ports.

 ;

 ; hlq.PROFILE.TCPIP

 ; ===================

 ;

 ; This is a sample configuration file for the TCPIP address space.

 ; For more information about this file, see "Configuring the TCPIP

 ; Address Space" and "Configuring the Telnet Server" in the Planning and

 ; Customization Manual.

 ; --

 ; Reserve PORTs for the following servers.

 ;

 ; NOTE: A port that is not reserved in this list can be used by

 ; any user. If you have TCP/IP hosts in your network that

 ; reserve ports in the range 1-1023 for privileged

 ; applications, you should reserve them here to prevent users

 ; from using them.

 PORT

4000 TCP SERVA ; IMS Port for SERVA

4001 TCP SERVB ; IMS Port for SERVB

Figure 12. Definition of the TCP/IP Profile

The hlq.TCPIP.DATA Data Set
For IMS, you do not have to make any extra entries in hlq.TCPIP.DATA. However,
you need to check the TCPIPJOBNAME parameter that was entered during TCP/IP
for MVS setup. This parameter is the name of the started procedure used to start
the TCP/IP MVS address space. This must match the job name in the Listener con-
figuration file TCPIP statement, as described in “TCPIP Statement” on page 106. In
the example below, TCPIPJOBNAME is set to TCPV3. The default name is TCPIP.

110 IP IMS Sockets Guide

 ;***

 ; *

 ; Name of Data Set: hlq.TCPIP.DATA *

 ; *

 ; This data, TCPIP.DATA, is used to specify configuration *

 ; information required by TCP/IP client programs. *

 ; *

 ;***

 ; TCPIPJOBNAME specifies the name of the started procedure which was

 ; used to start the TCP/IP address space. TCPIP is the default.

 ;

 TCPIPJOBNAME TCPV3

Figure 13. The TCPIPJOBNAME Parameter in the DATA Data Set

 Chapter 8. How to Customize and Operate the IMS Listener 111

112 IP IMS Sockets Guide

Chapter 9. CALL Instruction Application Programming
Interface (API)

This chapter describes the CALL instruction API for TCP/IP for MVS application
programs written in the COBOL, PL/I, or System/370 Assembler language. The
format and parameters are described for each socket call.

For more information about sockets, see UNIX Programmer’s Reference Manual

Notes:

1. Unless your program is running in a CICS environment, reentrant code and
multithread applications are not supported by this interface.

2. Only one copy of an interface can exist in a single address space.

3. For a PL/I program, include the following statement before your first call instruc-
tion.

DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

4. A C run-time library is required when you use the GETHOSTBYADDR or
GETHOSTBYNAME call.

 Call Formats
This API is invoked by calling the EZASOKET program and performs the same
functions as the C language calls. The parameters look different because of the
differences in the programming languages.

COBOL language call format

55──CALL ‘EZASOKET’ USING SOC-FUNCTION──parm1, parm2, ...──ERRNO RETCODE.──5%

SOC-FUNCTION A 16-byte character field, left-justified and padded on the right
with blanks. Set to the name of the call. SOC-FUNCTION is case
specific. It must be in uppercase.

parm n A variable number of parameters depending on the type call.

ERRNO If RETCODE is negative, there is an error number in ERRNO.
This field is used in most, but not all, of the calls. It corresponds
to the value returned by the tcperror() function in C.

RETCODE A fullword binary variable containing a code returned by the
EZASOKET call. This value corresponds to the normal return
value of a C function.

Assembler language call format
The following is the ‘EZASOKET’ call format for assembler language programs.

55──CALL EZASOKET,(SOC-FUNCTION,──parm1, parm2, ...──ERRNO RETCODE),VL──5%

 Copyright IBM Corp. 1994, 1997 113

PL/I language call format

55──CALL EZASOKET (SOC-FUNCTION──parm1, parm2, ...──ERRNO RETCODE);──5%

SOC-FUNCTION A 16-byte character field, left-justified and padded on the right
with blanks. Set to the name of the call.

parm n A variable number of parameters depending on the type call.

ERRNO If RETCODE is negative, there is an error number in ERRNO. This
field is used in most, but not all, of the calls. It corresponds to the
value returned by the tcperror() function in C.

RETCODE A fullword binary variable containing a code returned by the
EZASOKET call. This value corresponds to the normal return value of
a C function.

Programming Language Conversions
The parameter descriptions in this chapter are written using the VS COBOL II PIC
language syntax and conventions. Use the syntax and conventions that are appro-
priate for the language you want to use. The following are examples of storage
definition statements for COBOL, PL/I, and assembler language programs.

VS COBOL II PIC

PIC S9(4) BINARY HALFWORD BINARY VALUE

PIC S9(8) BINARY FULLWORD BINARY VALUE

PIC X(n) CHARACTER FIELD OF N BYTES

COBOL PIC

PIC S9(4) COMP HALFWORD BINARY VALUE

PIC S9(8) COMP FULLWORD BINARY VALUE

PIC X(n) CHARACTER FIELD OF N BYTES

PL/I DECLARE STATEMENT

DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE

DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE

DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE

DS F FULLWORD BINARY VALUE

DS CLn CHARACTER FIELD OF n BYTES

114 IP IMS Sockets Guide

 ACCEPT

Error Messages and Return Codes
For information about error messages, see OS/390 eNetwork Communications
Server: IP Messages Volume 1.

For information about error codes that are returned by TCP/IP, see “Sockets
Extended Return Codes” on page 229.

CALL Instructions for Assembler, PL/.I, and COBOL Programs
This section contains the description, syntax, parameters, and other related infor-
mation for each call instruction included in this API.

 ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The
call points to a socket that was previously created with a SOCKET call and marked
by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections

2. Creates a new socket with the same properties as s, and returns its descriptor
in RETCODE. The original socket (s) remains available to the calling program
to accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain
commands. The default is blocking; nonblocking mode can be established by
use of the FCNTL and IOCTL calls. When a socket is in blocking mode, an I/O
call waits for the completion of certain events. For example, a READ call will
block until the buffer contains input data. When an I/O call is issued: if the
socket is blocking, program processing is suspended until the event completes;
if the socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket
unless the socket is in nonblocking mode. The socket can be set to non-
blocking by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to
the ACCEPT to ensure that a connection request is pending. Using this tech-
nique ensures that subsequent ACCEPT calls will not block.

4. TCP/IP does not provide a function for screening clients. As a result, it is up to
the application program to control which connection requests it accepts, but it
can close a connection immediately after discovering the identity of the client.

 Chapter 9. CALL Instruction Application Programming Interface (API) 115

 ACCEPT

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.

01 S PIC 9(4) BINARY.

 01 NAME.

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'ACCEPT'. Left justify the

field and pad it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket
that was previously created with a SOCKET call. In a concur-
rent server, this is the socket upon which the server listens.

Parameter Values Returned to the Application
NAME A socket address structure that contains the client’s socket

address.

FAMILY A halfword binary field specifying the
addressing family. The call returns the value 2
for AF_INET.

PORT A halfword binary field that is set to the client’s
port number.

IP-ADDRESS A fullword binary field that is set to the 32-bit
internet address, in network-byte-order, of the
client’s host machine.

RESERVED Specifies 8 bytes of binary zeros. This field is
required, but not used.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE If the RETCODE value is positive, the RETCODE value is the
new socket number.

If the RETCODE value is negative, check the ERRNO field for
an error number.

116 IP IMS Sockets Guide

 BIND

 BIND
In a typical server program, the BIND call follows a SOCKET call and completes
the process of creating a new socket.

The BIND call can either specify the required port or let the system choose the
port. A listener program should always bind to the same well-known port, so that
clients know what socket address to use when attempting to connect.

In the AF_INET domain, the BIND call for a stream socket can specify the networks
from which it is willing to accept connection requests. The application can fully
specify the network interface by setting the ADDRESS field to the internet address
of a network interface. Alternatively, the application can use a wildcard to specify
that it wants to receive connection requests from any network interface. This is
done by setting the ADDRESS field to a fullword of zeros.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND'.

01 S PIC 9(4) BINARY.

 01 NAME.

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'BIND'. The field is left

justified and padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for
the socket to be bound.

NAME Specifies the socket address structure for the socket that is to
be bound.

FAMILY A halfword binary field specifying the
addressing family. The value is always set to
2, indicating AF_INET.

PORT A halfword binary field that is set to the port
number to which you want the socket to be
bound.

Note: If PORT is set to zero when the call is
issued, the system assigns the port
number for the socket. The application
can call the GETSOCKNAME macro
after the BIND macro to discover the
assigned port number.

 Chapter 9. CALL Instruction Application Programming Interface (API) 117

 CLOSE

IP-ADDRESS A fullword binary field that is set to the 32-bit
internet address (network byte order) of the
socket to be bound.

RESERVED Specifies an 8-byte character field that is
required but not used.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, this field contains an

error number. See “Sockets Extended Return Codes” on page 229, for
information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 CLOSE
The CLOSE call performs the following functions:

¹ The CLOSE call shuts down a socket and frees all resources allocated to it. If
the socket refers to an open TCP connection, the connection is closed.

¹ The CLOSE call is also issued by a concurrent server after it gives a socket to
a child server program. After issuing the GIVESOCKET and receiving notifica-
tion that the client child has successfully issued a TAKESOCKET, the concur-
rent server issues the close command to complete the passing of ownership. In
high-performance, transaction-based systems the timeout associated with the
CLOSE call can cause performance problems. In such sytems you should con-
sider the use of a SHUTDOWN call before you issue the CLOSE call. See
“SHUTDOWN” on page 166 for more information.

Notes:

1. If a stream socket is closed while input or output data is queued, the TCP
connection is reset and data transmission may be incomplete. The
SETSOCKET call can be used to set a linger condition, in which TCP/IP
will continue to attempt to complete data transmission for a specified period
of time after the CLOSE call is issued. See SO-LINGER in the description
of “SETSOCKOPT” on page 164.

2. A concurrent server differs from an iterative server. An iterative server pro-
vides services for one client at a time; a concurrent server receives con-
nection requests from multiple clients and creates child servers that actually
serve the clients. When a child server is created, the concurrent server
obtains a new socket, passes the new socket to the child server, and then
dissociates itself from the connection. The CICS Listener is an example of
a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new
socket should be opened. An attempt to use the same socket with another
call results in a nonzero return code.

118 IP IMS Sockets Guide

 CONNECT

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'CLOSE'.

01 S PIC 9(4) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

CALL 'EZASOKET' USING SOC-FUNCTION S ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Returned to the Application
SOC-FUNCTION A 16-byte field containing 'CLOSE'. Left justify the field and

pad it on the right with blanks.

S A halfword binary field containing the descriptor of the socket to
be closed.

Parameter Values Set by the Application
ERRNO A fullword binary field. If RETCODE is negative, this field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 CONNECT
The CONNECT call is issued by a client to establish a connection between a local
socket and a remote socket.

 Stream Sockets
For stream sockets, the CONNECT call is issued by a client to establish connection
with a server. The call performs two tasks:

1. It completes the binding process for a stream socket if a BIND call has not
been previously issued.

2. It attempts to make a connection to a remote socket. This connection is neces-
sary before data can be transferred.

 UDP Sockets
For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it
allows you to send messages without specifying the destination.

The call sequence issued by the client and server for stream sockets is:

¹ The server issues BIND and LISTEN to create a passive open socket.

¹ The client issues CONNECT to request the connection.

¹ The server accepts the connection on the passive open socket, creating a new
connected socket.

 Chapter 9. CALL Instruction Application Programming Interface (API) 119

 CONNECT

The blocking mode of the CONNECT call conditions its operation.

¹ If the socket is in blocking mode, the CONNECT call blocks the calling program
until the connection is established, or until an error is received.

¹ If the socket is in nonblocking mode the return code indicates whether the con-
nection request was successful.

– A zero RETCODE indicates that the connection was completed.

– A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates
that the connection is not completed but since the socket is nonblocking,
the CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT
and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more infor-
mation, see “SELECT” on page 152.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'CONNECT'.

01 S PIC 9(4) BINARY.

 01 NAME.

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte field containing 'CONNECT'. Left justify the field

and pad it on the right with blanks.

S A halfword binary number specifying the socket descriptor of
the socket that is to be used to establish a connection.

NAME A structure that contains the socket address of the target to
which the local, client socket is to be connected.

FAMILY A halfword binary field specifying the
addressing family. The value must be 2 for
AF_INET.

PORT A halfword binary field that is set to the
server’s port number in network byte order.
For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hex.

IP-ADDRESS A fullword binary field that is set to the 32-bit
internet address of the server’s host machine
in network byte order. For example, if the
internet address is 129.4.5.12 in dotted

120 IP IMS Sockets Guide

 FCNTL

decimal notation, it would be represented as
'8104050C' in hex.

RESERVED Specifies an 8-byte reserved field. This field is
required, but is not used.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, this field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 FCNTL
The blocking mode of a socket can either be queried or set to nonblocking using
the FNDELAY flag described in the FCNTL call. You can query or set the
FNDELAY flag even though it is not defined in your program.

See “IOCTL” on page 139 for another way to control a socket’s blocking mode.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'FCNTL'.

01 S PIC 9(4) BINARY.

01 COMMAND PIC 9(8) BINARY.

01 REQARG PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG

 ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'FCNTL'. The field is left

justified and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for
the socket that you want to unblock or query.

COMMAND A fullword binary number with the following values.

Value Description
3 Query the blocking mode of the socket
4 Set the mode to blocking or nonblocking for the

socket

 Chapter 9. CALL Instruction Application Programming Interface (API) 121

 GETCLIENTID

REQARG A fullword binary field containing a mask that TCP/IP uses to
set the FNDELAY flag.

¹ If COMMAND is set to 3 ('query') the REQARG field
should be set to 0.

¹ If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This
places the socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This
places the socket in blocking mode.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following.

¹ If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is non-
blocking. (The FNDELAY flag is on).

– If RETCODE contains X'00000000', the socket is
blocking. (The FNDELAY flag is off).

¹ If COMMAND was set to 4 (set), a successful call is indi-
cated by 0 in this field. In both cases, a RETCODE of −1
indicates an error (check the ERRNO field for the error
number).

 GETCLIENTID
GETCLIENTID call returns the identifier by which the calling application is known to
the TCP/IP address space in the calling program. The CLIENT parameter is used in
the GIVESOCKET and TAKESOCKET calls. See “GIVESOCKET” on page 135 for
a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,
the identifier of the caller (not necessarily the client) is returned.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETCLIENTID'.

 01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION CLIENT ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

122 IP IMS Sockets Guide

 GETHOSTBYADDR

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETCLIENTID'. The field

is left justified and padded to the right with blanks.

Parameter Values Returned to the Application
CLIENT A client-ID structure that describes the application that issued

the call.

DOMAIN A fullword binary number specifying the caller’s
domain. For TCP/IP the value is set to 2 for
AF_INET.

NAME An 8-byte character field set to the caller’s
address space name.

TASK An 8-byte character field set to the task identi-
fier of the caller.

RESERVED Specifies 20-byte character reserved field. This
field is required, but not used.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 GETHOSTBYADDR
The GETHOSTBYADDR call returns the domain name and alias name of a host
whose internet address is specified in the call. A given TCP/IP host can have mul-
tiple alias names and multiple host internet addresses.

Note: The C runtime libraries are required when GETHOSTBYADDR is issued by
your program.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYADDR'.

01 HOSTADDR PIC 9(8) BINARY.

01 HOSTENT PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

 Chapter 9. CALL Instruction Application Programming Interface (API) 123

 GETHOSTBYADDR

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETHOSTBYADDR'. The

field is left justified and padded on the right with blanks.

HOSTADDR A fullword binary field set to the internet address (specified in
network byte order) of the host whose name is being sought.

Parameter Values Returned to the Application
HOSTENT A fullword containing the address of the HOSTENT structure.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 An error occurred

Hostent ────┐
 │
 6
Hostname ─────5┌───────────┐

│ │ ┌───────────┐
│Address of │──────────5│Name X'00'│
│ │ └───────────┘

Alias_List ───5├───────────┤
│ │ List
│Address of │ ┌───────────┐
│ │──────────5│Address of │──────5Alias#1 X'00'

Family ───────5├───────────┤ ├───────────┤
│ │ │Address of │──────5Alias#2 X'00'

 │X'00000002'│ ├───────────┤
│ │ │Address of │──────5Alias#3 X'00'

Hostaddr_Len ─5├───────────┤ ├───────────┤
│ │ │X'00000000'│

 │X'00000004'│ └───────────┘
 │ │
Hostaddr_List─5├───────────┤

│ │ List
│Address of │ ┌───────────┐
│ │──────────5│Address of │──────5INET Addr#1

 └───────────┘ ├───────────┤
│Address of │──────5INET Addr#2

 ├───────────┤
│Address of │──────5INET Addr#3

 ├───────────┤
 │X'00000000'│
 └───────────┘

Figure 14. HOSTENT Structure Returned by the GETHOSTBYADDR Call

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 14. This
structure contains:

¹ The address of the host name that is returned by the call. The name length is
variable and is ended by X'00'.

¹ The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a vari-
able length field ended by X'00'.

¹ The value returned in the FAMILY field is always 2 for AF_INET.

124 IP IMS Sockets Guide

 GETHOSTBYNAME

¹ The length of the host internet address returned in the HOSTADDR_LEN field
is always 4 for AF_INET.

¹ The address of a list of addresses that point to the host internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/I or assembler lan-
guage, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 175.

 GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the internet address of a
host whose domain name is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host internet addresses.

TCP/IP tries to resolve the host name through a name server, if one is present. If a
name server is not present, the system searches the HOSTS.SITEINFO data set
until a matching host name is found or until an EOF marker is reached.

Notes:

1. HOSTS.LOCAL, HOSTS.ADDRINFO, and HOSTS.SITEINFO are described in
OS/390 eNetwork Communications Server: IP Configuration.

2. The C runtime libraries are required when GETHOSTBYNAME is issued by
your program.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYNAME'.

 01 NAMELEN PIC 9(8) BINARY.

 01 NAME PIC X(24).

 01 HOSTENT PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME

 HOSTENT RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETHOSTBYNAME'. The

field is left justified and padded on the right with blanks.

NAMELEN A value set to the length of the host name.

NAME A character string, up to 24 characters, set to a host name.
This call returns the address of the HOSTENT structure for this
name.

 Chapter 9. CALL Instruction Application Programming Interface (API) 125

 GETHOSTBYNAME

Parameter Values Returned to the Application
HOSTENT A fullword binary field that contains the address of the

HOSTENT structure.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 An error occurred

Hostent ────┐
 │
 6
Hostname ─────5┌───────────┐

│ │ ┌───────────┐
│Address of │──────────5│Name X'00'│
│ │ └───────────┘

Alias_List ───5├───────────┤
│ │ List
│Address of │ ┌───────────┐
│ │──────────5│Address of │──────5Alias#1 X'00'

Family ───────5├───────────┤ ├───────────┤
│ │ │Address of │──────5Alias#2 X'00'

 │X'00000002'│ ├───────────┤
│ │ │Address of │──────5Alias#3 X'00'

Hostaddr_Len ─5├───────────┤ ├───────────┤
│ │ │X'00000000'│

 │X'00000004'│ └───────────┘
 │ │
Hostaddr_List─5├───────────┤

│ │ List
│Address of │ ┌───────────┐
│ │──────────5│Address of │──────5INET Addr#1

 └───────────┘ ├───────────┤
│Address of │──────5INET Addr#2

 ├───────────┤
│Address of │──────5INET Addr#3

 ├───────────┤
 │X'00000000'│
 └───────────┘

Figure 15. HOSTENT Structure Returned by the GETHOSTYBYNAME Call

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 15. This
structure contains:

¹ The address of the host name that is returned by the call. The name length is
variable and is ended by X'00'.

¹ The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a vari-
able length field ended by X'00'.

¹ The value returned in the FAMILY field is always 2 for AF_INET.

¹ The length of the host internet address returned in the HOSTADDR_LEN field
is always 4 for AF_INET.

¹ The address of a list of addresses that point to the host internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

126 IP IMS Sockets Guide

 GETHOSTNAME

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/I or assembler lan-
guage, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 175.

 GETHOSTID
The GETHOSTID call returns the 32-bit internet address for the current host.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTID'.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

SOC-FUNCTION A 16-byte character field containing 'GETHOSTID'. The field is
left justified and padded on the right with blanks.

RETCODE Returns a fullword binary field containing the 32-bit internet
address of the host. There is no ERRNO parameter for this
call.

 GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTNAME'.

01 NAMELEN PIC 9(8) BINARY.

 01 NAME PIC X(24).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME

 ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETHOSTNAME'. The

field is left justified and padded on the right with blanks.

NAMELEN A fullword binary field set to the length of the NAME field.

 Chapter 9. CALL Instruction Application Programming Interface (API) 127

 GETIBMOPT

Parameter Values Returned to the Application
NAMELEN A fullword binary field set to the length of the host name.

NAME Indicates the receiving field for the host name. TCP/IP for MVS
allows a maximum length of 24-characters. The internet
standard is a maximum name length of 255 characters. The
actual length of the NAME field is found in NAMELEN.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 GETIBMOPT
The GETIBMOPT call returns the number of TCP/IP images installed on a given
MVS system and their status, versions, and names.

Note: Images from pre-V3R2 releases of TCP/IP for MVS are excluded. The
GETIBMOPT call is not meaningful for pre-V3R2 releases. With this infor-
mation, the caller can dynamically choose the TCP/IP image with which to
connect by using the INITAPI call. The GETIBMOPT call is optional. If it is
not used, follow the standard method to determine the connecting TCP/IP
image:

¹ Connect to the TCP/IP specified by TCPIPJOBNAME in the active
TCPIP.DATA file.

¹ Locate TCPIP.DATA by using one of the following:

SYSTCPD DD card
 jobname/userid.TCPIP.DATA
 zapname.TCPIP.DATA

For detailed information about the standard method, see OS/390 eNetwork Com-
munications Server: IP Planning and Migration Guide.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETIBMOPT'.

01 COMMAND PIC 9(8) BINARY VALUE IS 1.

 01 BUF.

03 NUM-IMAGES PIC 9(8) COMP.

03 TCP-IMAGE OCCURS 8 TIMES.

05 TCP-IMAGE-STATUS PIC 9(4) BINARY.

05 TCP-IMAGE-VERSION PIC 9(4) BINARY.

 05 TCP-IMAGE-NAME PIC X(8)

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION COMMAND BUF ERRNO RETCODE.

128 IP IMS Sockets Guide

 GETIBMOPT

Parameter Values Set by the Application
Parameter Description

SOC-FUNCTION
A 16-byte character field containing 'GETIBMOPT'. The field is
left justified and padded on the right with blanks.

COMMAND A value or the address of a fullword binary number specifying the
command to be processed. The only valid value is 1.

Parameter Values Returned by the Application
BUF A 100-byte buffer into which each active TCP/IP image's status,

version, and name are placed.

On successful return, these buffer entries contain the status, names, and versions
of up to 8 active TCP/IP images. The following layout shows the BUF field upon
completion of the call.

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are included
in the total BUF field. If the NUM_IMAGES returned is 0, there are no TCP/IP
images present.

The status field can have a combination of the following information:

Status Field Meaning

X'8000' Active

X'4000' Terminating

X'2000' Down

X'1000' Stopped or stopping

When the status field is returned with a combination of Down and Stopped, TCP/IP
abended. Stopped, when returned alone, indicates that TCP/IP was stopped.

The version field is X'0302' for TCP/IP V3R2 for MVS.

The name field is the PROC name, left-justified, and padded with blanks.

 Chapter 9. CALL Instruction Application Programming Interface (API) 129

 GETPEERNAME

┌────────────────────────┐
│ NUM_IMAGES │
│ (4 bytes) │
├───────────┬────────────┼───────────────────────────────────────┐
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
│───────────┼────────────┼───────────────────────────────────────│
│ Status │ Version │ Name │
│ (2 bytes) │ (2 bytes) │ (8 bytes) │
└───────────┴────────────┴───────────────────────────────────────┘

ERRNO A fullword binary field. If RETCODE is negative, this contains an
error number. See “Sockets Extended Return Codes” on
page 229, for information about ERRNO return codes.

RETCODE A fullword binary field with the following values:

Value Description

−1 Call returned error. See ERRNO field.

0 Successful call.

 GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local
socket is connected.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETPEERNAME'.

01 S PIC 9(4) BINARY.

 01 NAME.

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

130 IP IMS Sockets Guide

 GETSOCKNAME

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETPEERNAME'. The

field is left justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the
local socket connected to the remote peer whose address is
required.

Parameter Values Returned to the Application
NAME A structure to contain the peer name. The structure that is

returned is the socket address structure for the remote socket
that is connected to the local socket specified in field S.

FAMILY A halfword binary field containing the connection
peer’s addressing family. The call always returns
the value 2, indicating AF_INET.

PORT A halfword binary field set to the connection peer’s
port number.

IP-ADDRESS A fullword binary field set to the 32-bit internet
address of the connection peer’s host machine.

RESERVED Specifies an 8-byte reserved field. This field is
required, but not used.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified
socket. If the socket is not currently bound to an address the call returns with the
FAMILY field set, and the rest of the structure set to zero.

Since a stream socket is not assigned a name until after a successful call to either
BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after an
implicit bind to discover which port was assigned to the socket.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKNAME'.

01 S PIC 9(4) BINARY.

 01 NAME.

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

 Chapter 9. CALL Instruction Application Programming Interface (API) 131

 GETSOCKOPT

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETSOCKNAME'. The

field is left justified and padded on the right with blanks.

S A halfword binary number set to the descriptor of local socket
whose address is required.

Parameter Values Returned to the Application
NAME Specifies the socket address structure returned by the call.

FAMILY A halfword binary field containing the
addressing family. The call always returns the
value 2, indicating AF_INET.

PORT A halfword binary field set to the port number
bound to this socket. If the socket is not
bound, 0 is returned.

IP-ADDRESS A fullword binary field set to the 32-bit internet
address of the local host machine.

RESERVED Specifies 8 bytes of binary zeros. This field is
required but not used.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described
below. You must specify the option to be queried when you issue the
GETSOCKOPT call.

132 IP IMS Sockets Guide

 GETSOCKOPT

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKOPT'.

01 S PIC 9(4) BINARY.

01 OPTNAME PIC 9(8) BINARY.

88 SO-REUSEADDR VALUE 4.

88 SO-KEEPALIVE VALUE 8.

88 SO-BROADCAST VALUE 32.

 88 SO-LINGER VALUE 128.

88 SO-OOBINLINE VALUE 256.

 88 SO-SNDBUF VALUE 4097.

 88 SO-ERROR VALUE 4103.

 88 SO-TYPE VALUE 4104.

01 OPTVAL PIC X(16) BINARY.

01 OPTLEN PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GETSOCKOPT'. The field

is left justified and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for
the socket requiring options.

OPTNAME Set OPTNAME to the required option before you issue
GETSOCKOPT. The option are as follows:

SO-REUSEADDR Returns the status of local address reuse.
When enabled, this option allows local addresses that are
already in use to be bound. Instead of checking at BIND
time (the normal algorithm) the system checks at
CONNECT time to ensure that the local address and port
do not have the same remote address and port. If the
association already exists, Error 48 (EADDRINUSE) is
returned when the CONNECT is issued.

SO-BROADCAST Requests the status of the broadcast option,
which is the ability to send broadcast messages. This
option has no meaning for stream sockets.

SO-KEEPALIVE Requests the status of the TCP keep-alive
mechanism for a stream socket. When activated, the
keep-alive mechanism periodically sends a packet on an
otherwise idle connection. If the remote TCP does not
respond to the packet or to retransmissions of the packet,
the connection is terminated with the error ETIMEDOUT.

SO-LINGER Requests the status of LINGER.

¹ When the LINGER option has been enabled, and
data transmission has not been completed, a CLOSE

 Chapter 9. CALL Instruction Application Programming Interface (API) 133

 GETSOCKOPT

call blocks the calling program until the data is trans-
mitted or until the connection has timed out.

¹ If LINGER is not enabled, a CLOSE call returns
without blocking the caller. TCP/IP attempts to send
the data; although the data transfer is usually suc-
cessful, it cannot be guaranteed, because TCP/IP
only attempts to send the data for a specified amount
of time.

SO-OOBINLINE Requests the status of how out-of-band data
is to be received. This option has meaning only for stream
sockets.

¹ When this option is enabled, out-of-band data is
placed in the normal data input queue as it is
received, making it available to RECV, and
RECVFROM without having to specify the MSG-OOB
flag in those calls.

¹ When this option is disabled, out-of-band data is
placed in the priority data input queue as it is
received, making it available to RECV and
RECVFROM only when the MSG-OOB flag is set.

SO-SNDBUF Returns the size of the data portion of the TCP/IP
send buffer in OPTVAL. The size of the data portion of
the send buffer is protocol-specific, based on the
DATABUFFERPOOLSIZE statement in the
PROFILE.TCPIP data set. This value is adjusted to allow
for protocol header information.

SO-ERROR Requests any pending error on the socket and
clears the error status. It can be used to check for asyn-
chronous errors on connected datagram sockets or for
other asynchronous errors (errors that are not returned
explicitly by one of the socket calls).

SO-TYPE Returns socket type: stream, datagram, or raw.

Parameter Values Returned to the Application
OPTVAL

¹ For all values of OPTNAME other than SO-LINGER,
OPTVAL is a 32-bit fullword, containing the status of the
specified option.

– If the requested option is enabled, the fullword contains
a positive value; if the requested option is disabled, the
fullword contains zero.

– If OPTNAME is set to SO-ERROR, OPTVAL contains
the most recent ERRNO for the socket. This error vari-
able is then cleared.

– If OPTNAME is set to SO-TYPE, OPTVAL returns X'1'
for SOCK-STREAM, to X'2' for SOCK-DGRAM, or to
X'3' for SOCK-RAW.

134 IP IMS Sockets Guide

 GIVESOCKET

¹ If SO-LINGER is specified in OPTNAME, the following
structure is returned:

 ONOFF PIC X(8)

 LINGER PIC 9(8)

– A nonzero value returned in ONOFF indicates that the
option is enabled; a zero value indicates that it is disa-
bled.

– The LINGER value indicates the amount of time (in
seconds) TCP/IP will continue to attempt to send the
data after the CLOSE call is issued. To set the Linger
time, see “SETSOCKOPT” on page 164.

OPTLEN A fullword binary field containing the length of the data returned
in OPTVAL.

¹ For all values of OPTNAME except SO-LINGER, OPTLEN
will be set to 4 (one fullword).

¹ For OPTNAME of SO-LINGER, OPTVAL contains two
fullwords, so OPTLEN will be set to 8 (two fullwords).

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 GIVESOCKET
The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process
that has the same descriptors as the parent process. You can use this new child
process in the same way that you used the parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in
the following sequence:

1. A process issues a GETCLIENTID call to get the jobname of its region and its
MVS subtask identifier. This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child
process.

3. The child process issues a TAKESOCKET call to get the socket. The socket
now belongs to the child process, and can be used by TCP/IP to communicate
with another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.
The child process must use this new socket descriptor for all calls which
use this socket. The socket descriptor that was passed to the
TAKESOCKET call must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a
SELECT command that waits for the child to get the socket.

 Chapter 9. CALL Instruction Application Programming Interface (API) 135

 GIVESOCKET

5. When the child gets the socket, the parent receives an exception condition that
releases the SELECT command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'GIVESOCKET'.

01 S PIC 9(4) BINARY.

 01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'GIVESOCKET'. The field

is left justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the
socket to be given.

CLIENT A structure containing the identifier of the application to which
the socket should be given.

DOMAIN A fullword binary number that must be set to 2,
indicating AF_INET.

NAME Specifies an 8-character field, left-justified,
padded to the right with blanks, that can be set
to the name of the MVS address space that
will contain the application that is going to take
the socket.

¹ If the socket-taking application is in the
same address space as the socket-giving
application (as in CICS), NAME can be
specified. The socket-giving application
can determine its own address space
name by issuing the GETCLIENTID call.

¹ If the socket-taking application is in a dif-
ferent MVS address space (as in IMS), this
field should be set to blanks. When this is
done, any MVS address space that
requests the socket can have it.

TASK Specifies an 8-character field that can be set
to blanks, or to the identifier of the socket-
taking MVS subtask. If this field is set to

136 IP IMS Sockets Guide

 INITAPI

blanks, any subtask in the address space
specified in the NAME field can take the
socket.

¹ As used by IMS and CICS, the field should
be set to blanks.

¹ If TASK identifier is non-blank, the socket-
receiving task should already be in exe-
cution when the GIVESOCKET is issued.

RESERVED A 20-byte reserved field. This field is required,
but not used.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 INITAPI
The INITAPI call connects an application to the TCP/IP interface. Almost all
sockets programs that are written in COBOL, PL/I, or assembler language must
issue the INITAPI macro before they issue other sockets macros.

The exceptions to this rule are the following calls, which, when issued first, will gen-
erate a default INITAPI call.

 ¹ GETCLIENTID
 ¹ GETHOSTID
 ¹ GETHOSTNAME
 ¹ GETIBMOPT
 ¹ SELECT
 ¹ SELECTEX
 ¹ SOCKET
 ¹ TAKESOCKET.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'INITAPI'.

01 MAXSOC PIC 9(4) BINARY.

 01 IDENT.

 02 TCPNAME PIC X(8).

 02 ADSNAME PIC X(8).

 01 SUBTASK PIC X(8).

01 MAXSNO PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC IDENT SUBTASK

MAXSNO ERRNO RETCODE.

 Chapter 9. CALL Instruction Application Programming Interface (API) 137

 INITAPI

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'INITAPI'. The field is left

justified and padded on the right with blanks.

MAXSOC A halfword binary field set to the maximum number of sockets
this application will ever have open at one time. The maximum
number is 2000 and the minimum number is 50. This value is
used to determine the amount of memory that will be allocated
for socket control blocks and buffers. If less than 50 are
requested, MAXSOC defaults to 50.

IDENT A structure containing the identities of the TCP/IP address
space and the calling program’s address space. Specify IDENT
on the INITAPI call from an address space.

TCPNAME An 8-byte character field which should be set
to the MVS jobname of the TCP/IP address
space with which you are connecting.

ADSNAME An 8-byte character field set to the identity of
the calling program's address space. For
explicit-mode IMS server programs, use the
TIMSrvAddrSpc field passed in the TIM. If
ADSNAME is not specified, the system derives
a value from the MVS control block struc-
ture.

SUBTASK Indicates an 8-byte field, containing a unique subtask identifier
which is used to distinguish between multiple subtasks within a
single address space. Use your own jobname as part of your
subtask name. This will ensure that, if you issue more than one
INITAPI command from the same address space, each
SUBTASK parameter will be unique.

Parameter Values Returned to the Application
MAXSNO A fullword binary field that contains the highest socket number

assigned to this application. The lowest socket number is 0. If
you have 50 sockets, they are numbered from 0 to 49. If
MAXSNO is not specified, the value for MAXSNO is 49.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

138 IP IMS Sockets Guide

 IOCTL

 IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the charac-
teristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are
passed to and returned from IOCTL. The length of REQARG and RETARG is
determined by the value that you specify in COMMAND. See Table 3 on page 141,
for information about REQARG and RETARG.

 WORKING-STORAGE SECTION.

01 SOKET-FUNCTION PIC X(16) VALUE 'IOCTL '.

 01 S PIC 9(4) BINARY.

 01 COMMAND PIC 9(4) BINARY.

 01 IFREQ,

 3 NAME PIC X(16).

 3 FAMILY PIC 9(4) BINARY.

 3 PORT PIC 9(4) BINARY.

 3 ADDRESS PIC 9(8) BINARY.

 3 RESERVED PIC X(8).

 01 IFREQOUT,

 3 NAME PIC X(16).

 3 FAMILY PIC 9(4) BINARY.

 3 PORT PIC 9(4) BINARY.

 3 ADDRESS PIC 9(8) BINARY.

 3 RESERVED PIC X(8).

 01 GRP_IOCTL_TABLE(100)

 02 IOCTL_ENTRY,

 3 NAME PIC X(16).

 3 FAMILY PIC 9(4) BINARY.

 3 PORT PIC 9(4) BINARY.

 3 ADDRESS PIC 9(8) BINARY.

 3 NULLS PIC X(8).

 01 IOCTL_REQARG POINTER ;

 01 IOCTL_RETARG POINTER ;

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC 9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG

RETARG ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'IOCTL'. The field is left

justified and padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to
be controlled.

 Chapter 9. CALL Instruction Application Programming Interface (API) 139

 IOCTL

COMMAND To control an operating characteristic, set this field to one of
the following symbolic names. A value in a bit mask is associ-
ated with each symbolic name. By specifying one of these
names, you are turning on a bit in a mask which communicates
the requested operating characteristic to TCP/IP.

'FIONBIO'

Sets or clears blocking status.

'FIONREAD'

Returns the number of immediately readable bytes for the
socket.

'SIOCADDRT'
Adds a specified routing table entry.

'SIOCATMARK '

Determines whether the current location in the data input
is pointing to out-of-band data.

'SIOCDELRT'
Deletes a specified routing table entry.

'SIOCGIFADDR'

Requests the network interface address for a given inter-
face name. See the NAME field in Figure 16 for the
address format.

'SIOCGIFBRDADDR'

Requests the network interface broadcast address for a
given interface name. See the NAME field in Figure 16
for the address format.

'SIOCGIFCONF'
Requests the network interface configuration. The config-
uration is a variable number of 32-byte structures for-
matted as shown in Figure 16.

¹ When IOCTL is issued, REQARG must contain the
length of the array to be returned. To determine the
length of REQARG, multiply the structure length
(array element) by the number of interfaces
requested. The maximum number of array elements
that TCP/IP can return is 100.

¹ When IOCTL is issued, RETARG must be set to the
beginning of the storage area that you have defined
in your program for the array to be returned.

 03 NAME PIC X(16).

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

Figure 16. Interface Request Structure (IFREQ) for the IOCTL Call

140 IP IMS Sockets Guide

 IOCTL

'SIOCGIFDSTADDR'

Requests the network interface destination address for a
given interface name. (See IFREQ NAME field, Figure 16
for format.)

'SIOCGIFFLAGS'

Requests the network interface flags.

'SIOCGIFMETRIC'

Requests the network interface routing metric.

'SIOCGIFNETMASK'

Requests the network interface network mask.

'SIOCSIFMETRIC'

Sets the network interface routing metric.

'SIOCSIFDSTADDR'

Sets the network interface destination address.

'SIOCSIFFLAGS'

Sets the network interface flags.

REQARG and RETARG REQARG is used to pass arguments to IOCTL and
RETARG receives arguments from IOCTL. The REQARG and
RETARG parameters are described in Table 3.

Table 3 (Page 1 of 2). IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO X'8004A77E' 4 Set socket mode to:
X'00'=blocking;
X'01'=nonblocking

0 Not used

FIONREAD X'4004A77F' 0 not used 4 Number of characters avail-
able for read

SIOCADDRT X'8030A70A' 48 For IBM use only 0 For IBM use only

SIOCATMARK X'4004A707' 0 Not used 4 X'00'= at OOB data
X'01'= not at OOB data

SIOCDELRT X'8030A70B' 48 For IBM use only 0 For IBM use only

SIOCGIFADDR X'C020A70D' 32 First 16 bytes—interface
name. Last 16 bytes—not
used

32 Network interface address
(See Figure 16 on page 140
for format.)

SIOCGIFBRDADDR
X'C020A712'

32 First 16 bytes—interface
name. Last 16 bytes—not
used

32 Network interface address
(See Figure 16 on page 140
for format.)

SIOCGIFCONF X'C008A714' 8 Size of RETARG See note.

Note: When you call IOCTL with the SIOCGIFCONF command set, REQARG should contain the length in bytes of RETARG. Each
interface is assigned a 32-byte array element and REQARG should be set to the number of interfaces times 32. TCP/IP for
MVS can return up to 100 array elements.

SIOCGIFDSTADDR
X'C020A70F'

32 First 16 bytes—interface
name. Last 16 bytes—not
used

32 Destination interface address
(See Figure 16 on page 140
for format.)

SIOCGIFFLAGS
X'C020A711'

32 For IBM use only 32 For IBM use only

SIOCGIFMETRIC
X'C020A717'

32 For IBM use only 32 For IBM use only

SIOCGIFNETMASK
X'C020A715'

32 For IBM use only 32 For IBM use only

 Chapter 9. CALL Instruction Application Programming Interface (API) 141

 LISTEN

Table 3 (Page 2 of 2). IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCSIFMETRIC
X'8020A718'

32 For IBM use only 0 For IBM use only

SIOCSIFDSTADDR
X'8020A70E'

32 For IBM use only 0 For IBM use only

SIOCSIFFLAGS X'8020A710' 32 For IBM use only 0 For IBM use only

Parameter Values Returned to the Application
RETARG Returns an array whose size is based on the value in COMMAND. See

Table 3 for information about REQARG and RETARG.

ERRNO A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Sockets Extended Return Codes” on page 229, for
information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

The COMMAND 'SIOGIFCONF' returns a variable number of network interface
configurations. Figure 17 contains an example of a COBOL II routine which can be
used to work with such a structure.

Note: This call can only be programmed in languages which support address
pointers.

WORKING STORAGE SECTION.

77 REQARG PIC 9(8) COMP.

77 COUNT PIC 9(8) COMP VALUE max number of interfaces.

 LINKAGE SECTION.

 01 RETARG.

05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.

 10 NAME PIC X(16).

10 FAMILY PIC 9(4) BINARY.

10 PORT PIC 9(4) BINARY.

10 ADDR PIC 9(8) BINARY.

10 NULLS PIC X(8).

 PROCEDURE DIVISION.

MULTIPLY COUNT BY 32 GIVING REQARQ.

CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND

REQARG RETARG ERRNO RETCODE.

Figure 17. COBOL II Example for SIOCGIFCONF

 LISTEN
The LISTEN call:

¹ Completes the bind, if BIND has not already been called for the socket.

¹ Creates a connection-request queue of a specified length for incoming con-
nection requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

142 IP IMS Sockets Guide

 READ

The LISTEN call is typically used by a server to receive connection requests from
clients. When a connection request is received, a new socket is created by a sub-
sequent ACCEPT call, and the original socket continues to listen for additional con-
nection requests. The LISTEN call converts an active socket to a passive socket
and conditions it to accept connection requests from clients. Once a socket
becomes passive it cannot initiate connection requests.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'LISTEN'.

01 S PIC 9(4) BINARY.

01 BACKLOG PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'LISTEN'. The field is left-

justified and padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG A fullword binary number set to the number of communication
requests to be queued.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See Appendix A, “Return Codes” on
page 221, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 READ
The READ call reads the data on socket s. This is the conventional TCP/IP read
data operation. If a datagram packet is too long to fit in the supplied buffer,
datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no bounda-
ries separating the data. For example, if programs A and B are connected with a
stream socket and program A sends 1000 bytes, each call to this function can
return any number of bytes, up to the entire 1000 bytes. The number of bytes
returned will be contained in RETCODE. Therefore, programs using stream sockets
should place this call in a loop that repeats until all data has been received.

Note: See “EZACIC05” on page 173 for a subroutine that will translate ASCII
input data to EBCDIC.

 Chapter 9. CALL Instruction Application Programming Interface (API) 143

 READV

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'READ'.

01 S PIC 9(4) BINARY.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF

 ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'READ'. The field is left

justified and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the
socket that is going to read the data.

NBYTE A fullword binary number set to the size of BUF. READ does
not return more than the number of bytes of data in NBYTE
even if more data is available.

Parameter Values Returned to the Application
BUF On input, a buffer to be filled by completion of the call. The

length of BUF must be at least as long as the value of NBYTE.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the con-
nection is closed and no data is available.

>0 A positive value indicates the number of bytes
copied into the buffer.

−1 Check ERRNO for an error code.

 READV
The READV function reads data on a socket and stores it in a set of buffers. If a
datagram packet is too long to fit in the supplied buffers, datagram sockets discard
extra bytes.

144 IP IMS Sockets Guide

 READV

 WORKING-STORAGE SECTION.

01 SOKET-FUNCTION PIC X(16) VALUE 'READV '.

 01 S PIC 9(4) BINARY.

 01 IOVAMT PIC 9(4) BINARY.

 01 MSG-HDR.

 03 MSG_NAME POINTER.

 03 MSG_NAME_LEN POINTER.

 03 IOVPTR POINTER.

 03 IOVCNT POINTER.

 03 MSG_ACCRIGHTS PIC X(4).

 03 MSG_ACCRIGHTS_LEN PIC 9(4) BINARY.

 01 IOV.

03 BUFFER-ENTRY OCCURS N TIMES.

 05 BUFFER_ADDR POINTER.

 05 RESERVED PIC X(4).

 05 BUFFER_LENGTH PIC 9(4).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC 9(8) BINARY.

Parameter Values Set by the Application
S A value or the address of a halfword binary number specifying the

descriptor of the socket into which the data is to be read.

IOV An array of tripleword structures with the number of structures
equal to the value in IOVCNT and the format of the structures as
follows:

Fullword 1 Pointer to the address of a data buffer, which is filled
in on completion of the call.

Fullword 2 Reserved.

Fullword 3 The length of the data buffer referenced in Fullword
1.

IOVCNT A fullword binary field specifying the number of data buffers pro-
vided for this call.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, this contains an

error number.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is
closed and no data is available.

>0 A positive value indicates the number of bytes
copied into the buffer.

−1 Check ERRNO for an error code.

 Chapter 9. CALL Instruction Application Programming Interface (API) 145

 RECV

 RECV
The RECV call, like READ receives data on a socket with descriptor S. RECV
applies only to connected sockets. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For additional control of the incoming data, RECV can:

¹ Peek at the incoming message without having it removed from the buffer.
¹ Read out-of-band data.

For stream sockets, data is processed as streams of information with no bounda-
ries separating the data. For example, if programs A and B are connected with a
stream socket and program A sends 1000 bytes, each call to this function can
return any number of bytes, up to the entire 1000 bytes. The number of bytes
returned will be contained in RETCODE. Therefore, programs using stream sockets
should place RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV
blocks the caller until data arrives. If data is not available and the socket is in non-
blocking mode, RECV returns a −1 and sets ERRNO to 35 (EWOULDBLOCK). See
“FCNTL” on page 121 or “IOCTL” on page 139 for a description of how to set non-
blocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See “EZACIC05” on page 173 for a subroutine that will translate ASCII
input data to EBCDIC.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'RECV'.

01 S PIC 9(4) BINARY.

01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.

88 OOB VALUE IS 1.

88 PEEK VALUE IS 2.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE BUF

 ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'RECV'. The field is left

justified and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the
socket to receive the data.

FLAGS A fullword binary field with values as follows:

146 IP IMS Sockets Guide

 RECVFROM

NBYTE A value or the address of a fullword binary number set to the
size of BUF. RECV does not receive more than the number of
bytes of data in NBYTE even if more data is available.

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data. (Stream sockets
only). Even if the OOB flag is not set, out-
of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECV call will
read the same data.

Parameter Values Returned to the Application
BUF The input buffer to receive the data.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following :

Value Description
0 The socket is closed
>0 A positive return code indicates the number of bytes

copied into the buffer.
−1 Check ERRNO for an error code

 RECVFROM
The RECVFROM call receives data on a socket with descriptor S and stores it in a
buffer. The RECVFROM call applies to both connected and unconnected sockets.
The socket address is returned in the NAME structure. If a datagram packet is too
long to fit in the supplied buffers, datagram sockets discard extra bytes.

If NAME is nonzero, the call returns the address of the sender. The NBYTE param-
eter should be set to the size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no bounda-
ries separating the data. For example, if programs A and B are connected with a
stream socket and program A sends 1000 bytes, each call to this function can
return any number of bytes, up to the entire 1000 bytes. The number of bytes
returned will be contained in RETCODE. Therefore, programs using stream sockets
should place RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode,
RECVFROM blocks the caller until data arrives. If data is not available and the
socket is in nonblocking mode, RECVFROM returns a −1 and sets ERRNO to 35
(EWOULDBLOCK). See “FCNTL” on page 121 or “IOCTL” on page 139 for a
description of how to set nonblocking mode.

 Chapter 9. CALL Instruction Application Programming Interface (API) 147

 RECVFROM

Note: See “EZACIC05” on page 173 for a subroutine that will translate ASCII
input data to EBCDIC.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVFROM'.

01 S PIC 9(4) BINARY.

01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.

88 OOB VALUE IS 1.

88 PEEK VALUE IS 2.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

 01 NAME.

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS

NBYTE BUF NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'RECVFROM'. The field is

left justified and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the
socket to receive the data.

FLAGS A fullword binary field containing flag values as follows:

NBYTE A fullword binary number specifying the length of the input
buffer.

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set, out-
of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVFROM
call will read the same data.

Parameter Values Returned to the Application
BUF Defines an input buffer to receive the input data.

NAME A structure containing the address of the socket that sent the
data. The structure is:

148 IP IMS Sockets Guide

 RECVMSG

FAMILY A halfword binary number specifying the
addressing family. The value is always 2, indi-
cating AF_INET.

PORT A halfword binary number specifying the port
number of the sending socket.

IP-ADDRESS A fullword binary number specifying the 32-bit
internet address of the sending socket.

RESERVED An 8-byte reserved field. This field is required,
but is not used.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 The socket is closed.
>0 A positive return code indicates the number of bytes

of data transferred by the read call.
−1 Check ERRNO for an error code.

 RECVMSG
The RECVMSG call receives messages on a socket with descriptor S and stores
them in an array of message headers. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

 Chapter 9. CALL Instruction Application Programming Interface (API) 149

 RECVMSG

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVMSG '.

 01 S PIC 9(4) BINARY.

 01 MSG-HDR.

03 MSG-NAME USAGE IS POINTER.

03 MSG-NAME-LEN USAGE IS POINTER.

03 IOV USAGE IS POINTER.

03 IOVCNT USAGE IS POINTER.

03 MSG-ACCRIGHTS USAGE IS POINTER.

03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.

88 OOB VALUE IS 1.

88 PEEK VALUE IS 2.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.

 01 RECVMSG-IOVECTOR.

03 IOV1A USAGE IS POINTER.

05 IOV1AL PIC 9(8) COMP.

05 IOV1L PIC 9(8) COMP.

03 IOV2A USAGE IS POINTER.

05 IOV2AL PIC 9(8) COMP.

05 IOV2L PIC 9(8) COMP.

03 IOV3A USAGE IS POINTER.

05 IOV3AL PIC 9(8) COMP.

05 IOV3L PIC 9(8) COMP.

 01 RECVMSG-BUFFER1 PIC X(16).

 01 RECVMSG-BUFFER2 PIC X(16).

 01 RECVMSG-BUFFER3 PIC X(16).

01 RECVMSG-BUFNO PIC 9(8) COMP.

 PROCEDURE

SET MSG-NAME TO NULLS.

SET MSG-NAME-LEN TO NULLS.

SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.

MOVE 3 TO RECVMSG-BUFNO.

SET MSG-IOVCNT TO ADDRESS OF RECVMSG-BUFNO.

SET IOV1A TO ADDRESS OF RECVMSG-BUFFER1.

MOVE 0 TO MSG-IOV1AL.

MOVE LENGTH OF RECVMSG-BUFFER1 TO MSG-IOV1L.

SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.

MOVE 0 TO IOV2AL.

MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.

SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.

MOVE 0 TO IOV3AL.

MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.

SET MSG-ACCRIGHTS TO NULLS.

SET MSG-ACCRIGHTS-LEN TO NULLS.

MOVE X'00000000' TO FLAGS.

MOVE SPACES TO RECVMSG-BUFFER1.

MOVE SPACES TO RECVMSG-BUFFER2.

MOVE SPACES TO RECVMSG-BUFFER3.

CALL 'EZASOKET' USING SOC-FUNCTION S MSGHDR FLAGS ERRNO RETCODE.

150 IP IMS Sockets Guide

 RECVMSG

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
S A value or the address of a halfword binary number specifying the

socket descriptor.

MSG On input, a pointer to a message header into which the message
is received upon completion of the call.

Field Description

NAME On input, a pointer to a buffer where the
sender's address is stored upon completion
of the call.

NAME-LEN On input, a pointer to the size of the address
buffer that is filled in on completion of the
call.

IOV On input, a pointer to an array of tripleword
structures with the number of structures
equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1 A pointer to the address of a
data buffer

Fullword 2 Reserved

Fullword 3 A pointer to the length of the
data buffer referenced in
Fullword 1.

In COBOL, the IOV structure must be
defined separately in the Linkage section, as
shown in the example.

IOVCNT On input, a pointer to a fullword binary field
specifying the number of data buffers pro-
vided for this call.

ACCRIGHTS On input, a pointer to the access rights
received. This field is ignored.

ACCRLEN On input, a pointer to the length of the
access rights received. This field is ignored.

FLAGS A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set, out-
of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVMSG
call will read the same data.

 Chapter 9. CALL Instruction Application Programming Interface (API) 151

 SELECT

Parameter Values Returned by the Application
ERRNO A fullword binary field. If RETCODE is negative, this contains an

error number.

RETCODE A fullword binary field with the following values:

Value Description

<0 Call returned error. See ERRNO field.

0 Connection partner has closed connection.

>0 Number of bytes read.

 SELECT
In a process where multiple I/O operations can occur it is necessary for the
program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became avail-
able. The SELECT call allows you to test several sockets and to execute a subse-
quent I/O call only when one of the tested sockets is ready; thereby ensuring that
the I/O call will not block.

To use the SELECT call as a timer in your program, do either of the following:

¹ Set the read, write, and except arrays to zeros
¹ Specify MAXSOC <= 0.

Defining Which Sockets to Test
The SELECT call monitors for read operations, write operations, and exception
operations:

¹ When a socket is ready to read, either:

– A buffer for the specified sockets contains input data. If input data is avail-
able for a given socket, a read operation on that socket will not block.

– A connection has been requested on that socket.

¹ When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write opera-
tion on that socket will not block.

¹ When an exception condition has occurred on a specified socket it is an indi-
cation that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The right-most bit repres-
ents socket descriptor 0; the left-most bit represents socket descriptor 31, and so
on. If your process uses 32 or fewer sockets, the bit string is one fullword. If your
process uses 33 sockets, the bit string is two full words. You define the sockets
that you want to test by turning on bits in the string.

Note: To simplify string processing in COBOL, you can use the program
EZACIC06 to convert each bit in the string to a to a character. For more
information, see “EZACIC06” on page 173.

152 IP IMS Sockets Guide

 SELECT

 Read Operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it,
or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to ‘1’ before issuing the SELECT call. When the SELECT call
returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

 Write Operations
A socket is selected for writing (ready to be written) when:

¹ TCP/IP can accept additional outgoing data.

¹ The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket will be selected for write when the CONNECT
completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a SELECT call to ensure that the socket is ready for writing.
Once a socket is selected for WRITE, the program can determine the amount of
TCP/IP buffer space available by issuing the GETSOCKOPT call with the
SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to ‘1’ before issuing the SELECT call. When the
SELECT call returns, the corresponding bits in the WRETMSK indicate sockets
ready for writing.

 Exception Operations
For each socket to be tested, the SELECT call can check for an existing exception
condition. Two exception conditions are supported:

¹ The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call.
When this condition is selected, the calling program (concurrent server) should
issue CLOSE to dissociate itself from the socket.

¹ A socket has received out-of-band data. On this condition, a READ will return
the out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to ‘1’. When the SELECT call returns,
the corresponding bits in the ERETMSK indicate sockets with exception conditions.

 MAXSOC Parameter
The SELECT call must test each bit in each string before returning results. For effi-
ciency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECT call
tests only bits in the range 0 through the MAXSOC value.

 Chapter 9. CALL Instruction Application Programming Interface (API) 153

 SELECT

 TIMEOUT Parameter
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECT call returns, RETCODE is set to 0.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.

01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.

03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK

RRETMSK WRETMSK ERETMSK

 ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Bit masks are 32-bit fullwords with 1 bit for each socket. Up to 32 sockets fit into 1
32-bit mask (PIC X(4)). If you have 33 sockets, you must allocate 2 32-bit masks
(PIC X(8)).

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'SELECT'. The field is left

justified and padded on the right with blanks.

MAXSOC A fullword binary field set to the largest socket descriptor
number that is to be checked plus 1. (Remember to start
counting at zero).

TIMEOUT If TIMEOUT is a positive value, it specifies the maximum
interval to wait for the selection to complete. If
TIMEOUT-SECONDS is a negative value, the SELECT call
blocks until a socket becomes ready. To poll the sockets and
return immediately, specify the TIMEOUT value to be zero.

TIMEOUT is specified in the 2-word TIMEOUT as follows:

¹ TIMEOUT-SECONDS, word 1 of the TIMEOUT field, is the
seconds component of the time-out value.

¹ TIMEOUT-MICROSEC, word 2 of the TIMEOUT field, is the
microseconds component of the time-out value (0 through
999999).

154 IP IMS Sockets Guide

 SELECT

For example, if you want SELECT to timeout after 3.5 seconds,
set TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to
500000.

RSNDMSK A bit string sent to request read event status.

¹ For each socket to be checked for pending read events,
the corresponding bit in the string should be set to 1.

¹ For sockets to be ignored, the value of the corresponding
bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check
for read events.

WSNDMSK A bit string sent to request write event status.

¹ For each socket to be checked for pending write events,
the corresponding bit in the string should be set to 1.

¹ For sockets to be ignored, the value of the corresponding
bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check
for write events.

ESNDMSK A bit string sent to request exception event status.

¹ For each socket to be checked for pending exception
events, the corresponding bit in the string should be set to
1.

¹ For each socket to be ignored, the corresponding bit should
be set to 0.

If this parameter is set to all zeros, the SELECT will not check
for exception events.

Parameter Values Returned to the Application
RRETMSK A bit string returned with the status of read events. The length

of the string should be equal to the maximum number of
sockets to be checked. For each socket that is ready to read,
the corresponding bit in the string will be set to 1; bits that rep-
resent sockets that are not ready to read will be set to 0.

WRETMSK A bit string returned with the status of write events. The length
of the string should be equal to the maximum number of
sockets to be checked. For each socket that is ready to write,
the corresponding bit in the string will be set to 1; bits that rep-
resent sockets that are not ready to be written will be set to 0.

ERETMSK A bit string returned with the status of exception events. The
length of the string should be equal to the maximum number of
sockets to be checked. For each socket that has an exception
status, the corresponding bit will be set to 1; bits that represent
sockets that do not have exception status will be set to 0.

ERRNO A fullword binary field. If RETCODE is negative, the field con-
tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

 Chapter 9. CALL Instruction Application Programming Interface (API) 155

 SELECTEX

RETCODE A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the
three masks

0 Indicates that the SELECT time limit has
expired

−1 Check ERRNO for an error code

 SELECTEX
The SELECTEX call monitors a set of sockets, a time value and an ECB or list of
ECBs. It completes when either one of the sockets has activity, the time value
expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:

¹ Set the read, write, and except arrays to zeros
¹ Specify MAXSOC <= 0.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.

03 TIMEOUT-MINUTES PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 SELECB PIC X(4).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

where * is the size of the select mask

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK

RRETMSK WRETMSK ERETMSK

SELECB ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Parameter Values Set by the Application
MAXSOC A fullword binary field specifying the largest socket descriptor

number being checked.

TIMEOUT If TIMEOUT is a positive value, it specifies a maximum interval to
wait for the selection to complete. If TIMEOUT-SECONDS is a
negative value, the SELECT call blocks until a socket becomes

156 IP IMS Sockets Guide

 SELECTEX

ready. To poll the sockets and return immediately, set TIMEOUT to
be zeros.

TIMEOUT is specified in the 2-word TIMEOUT as follows:

¹ TIMEOUT-SECONDS, word 1 of the TIMEOUT field, is the
seconds component of the time-out value.

¹ TIMEOUT-MICROSEC, word 2 of the TIMEOUT field, is the
microseconds component of the time-out value (0 through
999999).

For example, if you want SELECTEX to timeout after 3.5 seconds,
set TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to
500000.

RSNDMSK The bit-mask array to control checking for read interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the
SELECT will not check for read interrupts. The length of this bit-
mask array is dependent on the value in MAXSOC.

WSNDMSK The bit-mask array to control checking for write interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the
SELECT will not check for write interrupts. The length of this bit-
mask array is dependent on the value in MAXSOC.

ESNDMSK The bit-mask array to control checking for exception interrupts. If
this parameter is not specified or the specified bit-mask is zeros,
the SELECT will not check for exception interrupts. The length of
this bit-mask array is dependent on the value in MAXSOC.

SELECB An ECB which, if posted, causes completion of the SELECTEX.

If the address of an ECB list is specified, you must set the
high-order bit of the last entry in the ECB list to one to signify it is
the last entry, and you must add the LIST keyword. The
ECBs must reside in the caller's primary address space.

Parameter Values Returned by the Application
ERRNO A fullword binary field. If RETCODE is negative, this contains an error

number.

RETCODE A fullword binary field.

Value Meaning

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will
be 0) or one of the caller's ECBs has been posted (ECB
value will be non-zero and the caller's descriptor sets will be
set to 0). The caller must initialize the ECB values to 0
before issuing the SELECTEX macro.

-1 Error. Check ERRNO.

RRETMSK The bit-mask array returned by the SELECT if RSNDMSK is specified.
The length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK The bit-mask array returned by the SELECT if WSNDMSK is specified.
The length of this bit-mask array is dependent on the value in MAXSOC.

 Chapter 9. CALL Instruction Application Programming Interface (API) 157

 SEND

ERETMSK The bit-mask array returned by the SELECT if ESNDMSK is specified.
The length of this bit-mask array is dependent on the value in MAXSOC.

 SEND
The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

¹ Send out-of-band data, for example, interrupts, aborts, and data marked urgent.
Only stream sockets created in the AF_INET address family support out-of-
band data.

¹ Suppress use of local routing tables. This implies that the caller takes control of
routing, writing network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no bounda-
ries separating the data. For example, if a program is required to send 1000 bytes,
each call to this function can send any number of bytes, up to the entire 1000
bytes, with the number of bytes sent returned in RETCODE. Therefore, programs
using stream sockets should place this call in a loop, reissuing the call until all data
has been sent.

Note: See “EZACIC04” on page 172 for a subroutine that will translate EBCDIC
input data to ASCII.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SEND'.

01 S PIC 9(4) BINARY.

01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.

88 OOB VALUE IS 1.

88 DONT-ROUTE VALUE IS 4.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE

BUF ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'SEND'. The field is left

justified and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of
the socket that is sending data.

FLAGS A fullword binary field with values as follows:

158 IP IMS Sockets Guide

 SENDMSG

NBYTE A fullword binary number set to the number of bytes of data to
be transferred.

BUF The buffer containing the data to be transmitted. BUF should
be the size specified in NBYTE.

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set, out-
of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 or >0 A successful call. The value is set to the
number of bytes transmitted.

−1 Check ERRNO for an error code

 SENDMSG
The SENDMSG call sends messages on a socket with descriptor S passed in an
array of messages.

 Chapter 9. CALL Instruction Application Programming Interface (API) 159

 SENDMSG

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDMSG '.

 01 S PIC 9(4) BINARY.

 01 MSG-HDR.

03 MSG-NAME USAGE IS POINTER.

03 MSG-NAME-LEN USAGE IS POINTER.

03 IOV USAGE IS POINTER.

03 IOVCNT USAGE IS POINTER.

03 MSG-ACCRIGHTS USAGE IS POINTER.

03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.

88 OOB VALUE IS 1.

88 DONTROUTE VALUE IS 4.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.

 01 SENDMSG-IOVECTOR.

03 IOV1A USAGE IS POINTER.

05 IOV1AL PIC 9(8) COMP.

05 IOV1L PIC 9(8) COMP.

03 IOV2A USAGE IS POINTER.

05 IOV2AL PIC 9(8) COMP.

05 IOV2L PIC 9(8) COMP.

03 IOV3A USAGE IS POINTER.

05 IOV3AL PIC 9(8) COMP.

05 IOV3L PIC 9(8) COMP.

 01 SENDMSG-BUFFER1 PIC X(16).

 01 SENDMSG-BUFFER2 PIC X(16).

 01 SENDMSG-BUFFER3 PIC X(16).

01 SENDMSG-BUFNO PIC 9(8) COMP.

 PROCEDURE

SET MSG-NAME TO NULLS.

SET MSG-NAME-LEN TO NULLS.

SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.

MOVE 3 TO SENDMSG-BUFNO.

SET MSG-IOVCNT TO ADDRESS OF SENDMSG-BUFNO.

SET IOV1A TO ADDRESS OF SENDMSG-BUFFER1.

MOVE 0 TO MSG-IOV1AL.

MOVE LENGTH OF SENDMSG-BUFFER1 TO MSG-IOV1L.

SET IOV2A TO ADDRESS OF SENDMSG-BUFFER2.

MOVE 0 TO IOV2AL.

MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.

SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.

MOVE 0 TO IOV3AL.

MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.

SET MSG-ACCRIGHTS TO NULLS.

SET MSG-ACCRIGHTS-LEN TO NULLS.

MOVE X'00000000' TO FLAGS.

MOVE SPACES TO SENDMSG-BUFFER1.

MOVE SPACES TO SENDMSG-BUFFER2.

MOVE SPACES TO SENDMSG-BUFFER3.

CALL 'EZASOKET' USING SOC-FUNCTION S MSGHDR FLAGS ERRNO RETCODE.

160 IP IMS Sockets Guide

 SENDMSG

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
S A value or the address of a halfword binary number specifying the

socket descriptor.

MSG A pointer to an array of message headers from which messages
are sent.

Field Description

NAME On input, a pointer to a buffer where the
sender's address is stored upon completion
of the call.

NAME-LEN On input, a pointer to the size of the address
buffer that is filled in on completion of the
call.

IOV On input, a pointer to an array of three
fullword structures with the number of struc-
tures equal to the value in IOVCNT and the
format of the structures as follows:

Fullword 1 A pointer to the address of a
data buffer

Fullword 2 Reserved

Fullword 3 A pointer to the length of the
data buffer referenced in
Fullword 1.

In COBOL, the IOV structure must be
defined separately in the Linkage section, as
shown in the example.

IOVCNT On input, a pointer to a fullword binary field
specifying the number of data buffers pro-
vided for this call.

ACCRIGHTS On input, a pointer to the access rights
received. This field is ignored.

ACCRLEN On input, a pointer to the length of the
access rights received. This field is ignored.

FLAGS A fullword field containing the following:

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set, out-
of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

 Chapter 9. CALL Instruction Application Programming Interface (API) 161

 SENDTO

Parameter Values Returned by the Application
ERRNO A fullword binary field. If RETCODE is negative, this contains an

error number.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 or >0 A successful call. The value is set to the number
of bytes transmitted.

−1 Check ERRNO for an error code.

 SENDTO
SENDTO is similar to SEND, except that it includes the destination address param-
eter. The destination address allows you to use the SENDTO call to send
datagrams on a UDP socket, regardless of whether or not the socket is connected.

The FLAGS parameter allows you to :

¹ Send out-of-band data such as, interrupts, aborts, and data marked as urgent.

¹ Suppress use of local routing tables. This implies that the caller takes control of
routing, which requires writing network software.

For datagram sockets SENDTO transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no bounda-
ries separating the data. For example, if a program is required to send 1000 bytes,
each call to this function can send any number of bytes, up to the entire 1000
bytes, with the number of bytes sent returned in RETCODE. Therefore, programs
using stream sockets should place SENDTO in a loop that repeats the call until all
data has been sent.

Note: See “EZACIC04” on page 172 for a subroutine that will translate EBCDIC
input data to ASCII.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDTO'.

01 S PIC 9(4) BINARY.

01 FLAGS. PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.

88 OOB VALUE IS 1.

88 DONT-ROUTE VALUE IS 4.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

 01 NAME

03 FAMILY PIC 9(4) BINARY.

03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE

BUF NAME ERRNO RETCODE.

162 IP IMS Sockets Guide

 SENDTO

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'SENDTO'. The field is left

justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the
socket sending the data.

FLAGS A fullword field that returns one of the following:

NBYTE A fullword binary number set to the number of bytes to
transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF
should be the size specified in NBYTE.

NAME Specifies the socket name structure as follows:

FAMILY A halfword binary field containing the
addressing family. For TCP/IP the value must
be 2, indicating AF_INET.

PORT A halfword binary field containing the port
number bound to the socket.

IP-ADDRESS A fullword binary field containing the socket’s
32-bit internet address.

RESERVED Specifies 8-byte reserved field. This field is
required, but not used.

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set, out-
of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 or >0 A successful call. The value is set to the
number of bytes transmitted.

−1 Check ERRNO for an error code

 Chapter 9. CALL Instruction Application Programming Interface (API) 163

 SETSOCKOPT

 SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT
can be called only for sockets in the AF_INET domain.

The OPTVAL and OPTLEN parameters are used to pass data used by the partic-
ular set command. The OPTVAL parameter points to a buffer containing the data
needed by the set command. The OPTVAL parameter is optional and can be set to
0, if data is not needed by the command. The OPTLEN parameter must be set to
the size of the data pointed to by OPTVAL.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SETSOCKOPT'.

01 S PIC 9(4) BINARY.

01 OPTNAME PIC 9(8) BINARY.

88 SO-REUSEADDR VALUE 4.

88 SO-KEEPALIVE VALUE 8.

88 SO-BROADCAST VALUE 32.

 88 SO-LINGER VALUE 128.

88 SO-OOBINLINE VALUE 256.

01 OPTVAL PIC 9(16) BINARY.

01 OPTLEN PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'SETSOCKOPT'. The field

is left justified and padded to the right with blanks.

S A halfword binary number set to the socket whose options are
to be set.

OPTNAME Specify one of the following values.

SO-REUSEADDR Toggles local address re-useability. This
option allows local addresses that are already in use to
be bound. Instead of checking at BIND time (the normal
algorithm) the system checks at CONNECT time to
ensure that the local address and port do not have the
same remote address and port. If the association already
exists, Error 48 (EADDRINUSE) is returned when the
CONNECT is issued.

The default is DISABLED.

SO-BROADCAST Toggles the ability to broadcast messages.
This option has no meaning for stream sockets.

If SO-BROADCAST is enabled, the program can send
broadcast messages over the socket to destinations
which support the receipt of packets.

164 IP IMS Sockets Guide

 SETSOCKOPT

The default is DISABLED.

SO-KEEPALIVE Toggles the TCP keep-alive mechanism for a
stream socket. The default is disabled. When activated,
the keep-alive mechanism periodically sends a packet on
an otherwise idle connection. If the remote TCP does not
respond to the packet or to retransmissions of the packet,
the connection is terminated with the error ETIMEDOUT.

SO-LINGER Controls how TCP/IP deals with data that it has
not been able to transmit when the socket is closed. This
option has meaning only for stream sockets.

¹ When LINGER is enabled and CLOSE is called, the
calling program is blocked until the data is success-
fully transmitted or the connection has timed out.

¹ When LINGER is disabled, the CLOSE call returns
without blocking the caller, and TCP/IP continues to
attempt to send the data for a specified period of
time. Although this usually provides sufficient time to
complete the data transfer, use of the LINGER option
does not guarantee successful completion because
TCP/IP only waits the amount of time specified in
OPTVAL LINGER.

The default is DISABLED.

SO-OOBINLINE Toggles the ability to receive out-of-band data.
This option has meaning only for stream sockets.

¹ When this option is enabled, out-of-band data is
placed in the normal data input queue as it is
received, and is available to a RECVFROM or a
RECV call whether or not the OOB flag is set in the
call.

¹ When this option is disabled, out-of-band data is
placed in the priority data input queue as it is received
and is available to a RECV or a RECVFROM call only
when the OOB flag is set.

The default is DISABLED.

OPTVAL Contains data which further defines the option specified in
OPTNAME.

¹ For OPTNAME of SO-BROADCAST, SO-OOBINLINE, and
SO-REUSEADDR, OPTVAL is a one-word binary integer.
Set OPTVAL to a nonzero positive value to enable the
option; set OPTVAL to zero to disable the option.

¹ For SO-LINGER, OPTVAL assumes the following structure:

 ONOFF PIC X(4).

LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to enable the option; set it
to zero to disable the option. Set the LINGER value to the
amount of time (in seconds) TCP/IP will linger after the
CLOSE call.

 Chapter 9. CALL Instruction Application Programming Interface (API) 165

 SHUTDOWN

OPTLEN A fullword binary number specifying the length of the data
returned in OPTVAL.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which
attempts to complete all outstanding data transmission requests prior to breaking
the connection. The SHUTDOWN call can be used to close one-way traffic while
completing data transfer in the other direction. The HOW parameter determines the
direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter
determines the amount of time the system will wait before releasing the connection.
For example, with a LINGER value of 30 seconds, system resources (including the
IMS or CICS transaction) will remain in the system for up to 30 seconds after the
CLOSE call is issued. In high volume, transaction-based systems like CICS and
IMS, this can impact performance severely.

If the SHUTDOWN call is issued, when the CLOSE call is received, the connection
can be closed immediately, rather than waiting for the 30 second delay.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SHUTDOWN'.

01 S PIC 9(4) BINARY.

01 HOW PIC 9(8) BINARY.

 88 END-FROM VALUE 0.

 88 END-TO VALUE 1.

 88 END-BOTH VALUE 2.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S HOW ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'SHUTDOWN'. The field is

left justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the
socket to be shutdown.

166 IP IMS Sockets Guide

 SOCKET

HOW A fullword binary field. Set to specify whether all or part of a
connection is to be shut down. The following values can be set:

Value Description

0 (END-FROM) Ends further receive operations.

1 (END-TO) Ends further send operations.

2 (END-BOTH) Ends further send and receive operations.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 SOCKET
The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'SOCKET'.

01 AF PIC 9(8) COMP VALUE 2.

01 SOCTYPE PIC 9(8) BINARY.

 88 STREAM VALUE 1.

 88 DATAGRAM VALUE 2.

 88 RAW VALUE 3.

01 PROTO PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION AF SOCTYPE

PROTO ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'SOCKET'. The field is left

justified and padded on the right with blanks.

AF A fullword binary field set to the addressing family. For TCP/IP
the value is set to 2 for AF_INET.

SOCTYPE A fullword binary field set to the type of socket required. The
types are:

Value Description

1 Stream sockets provide sequenced, two-way byte
streams that are reliable and connection-oriented.
They support a mechanism for out-of-band data.

 Chapter 9. CALL Instruction Application Programming Interface (API) 167

 TAKESOCKET

2 Datagram sockets provide datagrams, which are
connectionless messages of a fixed maximum
length whose reliability is not guaranteed.
Datagrams can be corrupted, received out of order,
lost, or delivered multiple times.

3 Raw sockets provide the interface to internal proto-
cols (such as IP and ICMP).

PROTO A fullword binary field set to the protocol to be used for the
socket. If this field is set to zero, the default protocol is used.
For streams, the default is TCP; for datagrams, the default is
UDP.

PROTO numbers are found in the hlq.etc.proto data set.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
> or = 0 Contains the new socket descriptor
−1 Check ERRNO for an error code

 TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new
socket. Typically, a child server issues this call using client ID and socket descriptor
data which it obtained from the concurrent server. See “GIVESOCKET” on
page 135 for a discussion of the use of GETSOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in
RETCODE. You should use this new socket descriptor in subsequent calls
such as GETSOCKOPT, which require the S (socket descriptor) parameter.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'TAKESOCKET'.

01 SOCRECV PIC 9(4) BINARY.

 01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION SOCRECV CLIENT

 ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

168 IP IMS Sockets Guide

 TERMAPI

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'TAKESOCKET'. The field

is left justified and padded to the right with blanks.

SOCRECV A halfword binary field set to the descriptor of the socket to be
taken. The socket to be taken is passed by the concurrent
server.

CLIENT Specifies the client ID of the program that is giving the socket.
In CICS and IMS, these parameters are passed by the Listener
program to the program that issues the TAKESOCKET call.

¹ In CICS, the information is obtained using EXEC CICS
RETRIEVE.

¹ In IMS, the information is obtained by issuing GU TIM.

DOMAIN A fullword binary field set to domain of the
program giving the socket. It is always 2, indi-
cating AF_INET.

NAME Specifies an 8-byte character field set to the
MVS address space identifier of the program
that gave the socket.

TASK Specifies an 8-byte character field set to the
task identifier of the task that gave the socket.

RESERVED A 20-byte reserved field. This field is required,
but not used.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229 for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
> or = 0 Contains the new socket descriptor
−1 Check ERRNO for an error code

 TERMAPI
This call terminates the session created by INITAPI.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS

'TERMAPI'.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

 Chapter 9. CALL Instruction Application Programming Interface (API) 169

 WRITE

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'TERMAPI'. The field is

left justified and padded to the right with blanks.

 WRITE
The WRITE call writes data on a connected socket. This call is similar to SEND,
except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the
receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.
For example, if a program wishes to send 1000 bytes, each call to this function can
send any number of bytes, up to the entire 1000 bytes. The number of bytes sent
will be returned in RETCODE. Therefore, programs using stream sockets should
place this call in a loop, calling this function until all data has been sent.

See “EZACIC04” on page 172 for a subroutine that will translate EBCDIC output
data to ASCII.

 WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS 'WRITE'.

01 S PIC 9(4) BINARY.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF

 ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
SOC-FUNCTION A 16-byte character field containing 'WRITE'. The field is left

justified and padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE A fullword binary field set to the number of bytes of data to be
transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Parameter Values Returned to the Application
ERRNO A fullword binary field. If RETCODE is negative, the field con-

tains an error number. See “Sockets Extended Return Codes”
on page 229, for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description
0 or >0 A successful call. A return code greater than 0 indi-

cates the number of bytes of data written.

170 IP IMS Sockets Guide

 WRITEV

−1 Check ERRNO for an error code

 WRITEV
The WRITEV function writes data on a socket from a set of buffers.

 WORKING-STORAGE SECTION.

01 SOKET-FUNCTION PIC X(16) VALUE 'WRITEV '.

 01 S PIC 9(4) BINARY.

 01 IOVAMT PIC 9(4) BINARY.

 01 MSG-HDR.

 03 MSG_NAME POINTER.

 03 MSG_NAME_LEN POINTER.

 03 IOVPTR POINTER.

 03 IOVCNT POINTER.

 03 MSG_ACCRIGHTS PIC X(4).

 03 MSG_ACCRIGHTS_LEN PIC 9(4) BINARY.

 01 IOV.

03 BUFFER-ENTRY OCCURS N TIMES.

 05 BUFFER_ADDR POINTER.

 05 RESERVED PIC X(4).

 05 BUFFER_LENGTH PIC 9(4).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC 9(8) BINARY.

 PROCEDURE

SET BUFFER-POINTER(1) TO ADDRESS-OF BUFFER1.

 SET BUFFER-LENGTH(1) TO LENGTH-OF BUFFER1.

SET BUFFER-POINTER(2) TO ADDRESS-OF BUFFER2.

 SET BUFFER-LENGTH(2) TO LENGTH-OF BUFFER2.

 " " " " "

 " " " " "

SET BUFFER-POINTER(n) TO ADDRESS-OF BUFFERn.

 SET BUFFER-LENGTH(n) TO LENGTH-OF BUFFERn.

CALL 'EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values Set by the Application
S A value or the address of a halfword binary number specifying the

descriptor of the socket from which the data is to be written.

IOV An array of tripleword structures with the number of structures
equal to the value in IOVCNT and the format of the structures as
follows:

Fullword 1 The address of a data buffer.

Fullword 2 Reserved.

Fullword 3 The length of the data buffer referenced in Fullword
1.

IOVCNT A fullword binary field specifying the number of data buffers pro-
vided for this call.

 Chapter 9. CALL Instruction Application Programming Interface (API) 171

 EZACIC04

Parameters Returned by the Application
ERRNO A fullword binary field. If RETCODE is negative, this contains an

error number.

RETCODE A fullword binary field.

Value Meaning

<0 Error. Check ERRNO.

0 Connection partner has closed connection.

>0 Number of bytes sent.

Data Translation Programs for the Socket Call Interface
In addition to the socket calls, you can use the following utility programs to translate
data:

 Data Translation
TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its subsys-
tems use EBCDIC data notation. In situations where data must be translated from
one notation to the other, you can use the following utility programs:

¹ EZACIC04—Translates EBCDIC data to ASCII data
¹ EZACIC05—Translates ASCII data to EBCDIC data

Bit String Processing
In C-language, bit strings are often used to convey flags, switch settings, etc;
TCP/IP makes frequent uses of bit strings. However, since bit strings are difficult to
decode in COBOL, TCP/IP includes:

¹ EZACIC06—Translates bit-masks into character arrays and character arrays
into bit-masks.

¹ EZACIC08—Interprets the variable length address list in the HOSTENT struc-
ture returned by GETHOSTBYNAME or GETHOSTBYADDR.

 EZACIC04
The EZACIC04 program is used to translate EBCDIC data to ASCII data.

 WORKING STORAGE

01 OUT-BUFFER PIC X(length of output).

01 LENGTH PIC 9(8) BINARY.

 PROCEDURE

CALL 'EZACIC04' USING OUT-BUFFER LENGTH.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

OUT-BUFFER A buffer that contains the following:

¹ When called – EBCDIC data
¹ Upon return – ASCII data

LENGTH Specifies the length of the data to be translated.

172 IP IMS Sockets Guide

 EZACIC06

 Examples
None.

 EZACIC05
The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC
data is required by COBOL, PL/I, and assembler language programs.

 WORKING STORAGE

01 IN-BUFFER PIC X(length of output)

01 LENGTH PIC 9(8) BINARY VALUE

 PROCEDURE

CALL 'EZACIC05' USING IN-BUFFER LENGTH.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

IN-BUFFER A buffer that contains the following:

¹ When called – ASCII data
¹ Upon return – EBCDIC data.

LENGTH Specifies the length of the data to be translated.

 Examples
None.

 EZACIC06
The SELECT call uses bit strings to specify the sockets to test and to return the
results of the test. Because bit strings are difficult to manage in COBOL, you might
want to use the assembler language program EZACIC06 to translate them to char-
acter strings to be used with the SELECT call.

 WORKING STORAGE

01 TOKEN PIC X(16) VALUE 'TCPIPBITMASKCOBL'.

 01 CH-MASK.

 05 CHAR-STRING PIC X(nn).

01 CHAR-ARRAY REDEFINES CH-MASK.

05 CHAR-ENTRY-TABLE OCCURS nn TIMES.

 10 CHAR-ENTRY PIC X(1).

 01 BIT-MASK.

05 BIT-ARRAY-FWDS PIC X(*) BINARY.

 01 COMMAND.

05 CTOB PIC X(4) VALUE 'CTOB'.

05 BTOC PIC X(4) VALUE 'BTOC'.

01 BIT-LNGTH PIC 9(8) BINARY VALUE '8'.

01 RETCODE PIC 9(8) BINARY.

 PROCEDURE

CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK

 BIT-LENGTH RETCODE.

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

 Chapter 9. CALL Instruction Application Programming Interface (API) 173

 EZACIC06

TOKEN Specifies a 16 character identifier. This identifier is required and it
must be the first parameter in the list.

CH-MASK Specifies the character array where nn is the maximum number of
sockets in the array.

BIT-MASK Specifies the bit string to be translated for the SELECT call. The
bits are ordered right-to-left with the right-most bit representing
socket 0. The socket positions in the character array are indexed
starting with 1 making socket 0 index number 1 in the character
array. You should keep this in mind when turning character posi-
tions on and off.

COMMAND BTOC—Specifies bit string to character array translation.

CTOB—Specifies character array to bit string translation.

BIT-LNGTH Specifies the length of the bit-mask.

RETCODE A binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

 Examples
If you want to use the SELECT call to test sockets 0, 5, and 9, and you are using a
character array to represent the sockets, you must set the appropriate characters in
the character array to 1. In this example, index positions 1, 6 and 10 in the char-
acter array are set to 1. Then you can call EZACIC06 with the COMMAND param-
eter set to CTOB. When EZACIC06 returns, BIT-MASK contains a fullword with bits
0, 5, and 9 (numbered from the right) turned on as required by the SELECT call.
These instructions process the bit string shown in the following example.

MOVE ZEROS TO CHAR-ENTRY-TABLE.

MOVE '1'TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(10).

CALL 'EZACIC06' USING TOKEN CTOB BIT-MASK CH-MASK

 BIT-LENGTH RETCODE.

MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket
activity, enter the following instructions.

MOVE TO

BIT-MASK.

CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK

 BIT-LENGTH RETCODE.

PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX

FROM 1 BY 1 UNTIL IDX EQUAL 10.

TEST-SOCKET.

IF CHAR-ENTRY(IDX) EQUAL '1'

THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT

ELSE NEXT SENTENCE.

TEST-SOCKET-EXIT.

 EXIT.

174 IP IMS Sockets Guide

 EZACIC08
The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket
calls that return a structure known as HOSTENT. A given TCP/IP host can have
multiple alias names and host internet addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names and
internet addresses in the HOSTENT structure that is returned by the
GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or assembler language, the HOSTENT structure can be
processed in a relatively straight-forward manner. However, if you are coding in
COBOL, HOSTENT can be more difficult to process and you should use the
EZACIC08 subroutine to process it for you.

Here is how it works:

¹ GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that
indirectly addresses the lists of alias names and internet addresses.

¹ Upon return from GETHOSTBYADDR or GETHOSTBYNAME your program
calls EZACIC08 and passes it the address of the HOSTENT structure.
EZACIC08 processes the structure and returns the following:

1. The length of host name, if present

2. The host name

3. The number of alias names for the host

4. The alias name sequence number

5. The length of the alias name

6. The alias name

7. The host internet address type, always 2 for AF_INET

8. The host internet address length, always 4 for AF_INET

9. The number of host internet addresses for this host

10. The host internet address sequence number.

11. The host internet address.

¹ If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one
alias name or host internet address (3 and 9 above), the application program
should repeat the call to EZACIC08 until all alias names and host internet
addresses have been retrieved.

 Chapter 9. CALL Instruction Application Programming Interface (API) 175

 WORKING STORAGE

01 HOSTENT-ADDR PIC 9(8) BINARY.

01 HOSTNAME-LENGTH PIC 9(4) BINARY.

 01 HOSTNAME-VALUE PIC X(255)

01 HOSTALIAS-COUNT PIC 9(4) BINARY.

01 HOSTALIAS-SEQ PIC 9(4) BINARY.

01 HOSTALIAS-LENGTH PIC 9(4) BINARY.

 01 HOSTALIAS-VALUE PIC X(255)

01 HOSTADDR-TYPE PIC 9(4) BINARY.

01 HOSTADDR-LENGTH PIC 9(4) BINARY.

01 HOSTADDR-COUNT PIC 9(4) BINARY.

01 HOSTADDR-SEQ PIC 9(4) BINARY.

01 HOSTADDR-VALUE PIC 9(8) BINARY.

01 RETURN-CODE PIC 9(8) BINARY.

 PROCEDURE

CALL 'EZASOKET' USING 'GETHOSTBYxxxx'

 HOSTENT-ADDR

 RETCODE.

Where xxxx is ADDR or NAME.

CALL 'EZACIC08' USING HOSTENT-ADDR HOSTNAME-LENGTH

HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ

 HOSTALIAS-LENGTH HOSTALIAS-VALUE

HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT

HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

For equivalent PL/I and assembler language declarations, see “Programming Lan-
guage Conversions” on page 114.

Parameter Values set by the Application:

HOSTENT-ADDR This fullword binary field must contain the address of the
HOSTENT structure (as returned by the GETHOSTBYxxxx
call). This variable is the same as the variable HOSTENT in
the GETHOSTBYADDR and GETHOSTBYNAME socket
calls.

HOSTALIAS-SEQ This halfword field is used by EZACIC08 to index the list of
alias names. When EZACIC08 is called, it adds 1 to the
current value of HOSTALIAS-SEQ and uses the resulting
value to index into the table of alias names. Therefore, for a
given instance of GETHOSTBYxxxx, this field should be set
to zero for the initial call to EZACIC08. For all subsequent
calls to EZACIC08, this field should contain the
HOSTALIAS-SEQ number returned by the previous invoca-
tion.

HOSTADDR-SEQ This halfword field is used by EZACIC08 to index the list of
IP addresses. When EZACIC08 is called, it adds 1 to the
current value of HOSTADDR-SEQ and uses the resulting
value to index into the table of IP addresses. Therefore, for a
given instance of GETHOSTBYxxxx, this field should be set
to zero for the initial call to EZACIC08. For all subsequent

176 IP IMS Sockets Guide

calls to EZACIC08, this field should contain the
HOSTADDR-SEQ number returned by the previous call.

Parameter Values Returned to the Application:

HOSTNAME-LENGTH This halfword binary field contains the length of the host
name (if host name was returned).

HOSTNAME-VALUE This 255-byte character string contains the host name (if host
name was returned).

HOSTALIAS-COUNT This halfword binary field contains the number of alias names
returned.

HOSTALIAS-SEQ This halfword binary field is the sequence number of the alias
name currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH This halfword binary field contains the length of the alias
name currently found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE This 255-byte character string contains the alias name
returned by this instance of the call. The length of the alias
name is contained in HOSTALIAS-LENGTH.

HOSTADDR-TYPE This halfword binary field contains the type of host address.
For FAMILY type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH This halfword binary field contains the length of the host
internet address currently found in HOSTADDR-VALUE. For
FAMILY type AF_INET, HOSTADDR-LENGTH is always set
to 4.

HOSTADDR-COUNT This halfword binary field contains the number of host internet
addresses returned by this instance of the call.

HOSTADDR-SEQ This halfword binary field contains the sequence number of
the host internet address currently found in
HOSTADDR-VALUE.

HOSTADDR-VALUE This fullword binary field contains a host internet address.

RETURN-CODE This fullword binary field contains the EZACIC08 return code:

Value Description
0 Successful completion
-1 Invalid HOSTENT address

 Chapter 9. CALL Instruction Application Programming Interface (API) 177

178 IP IMS Sockets Guide

Chapter 10. IMS Listener Samples

This chapter includes sample programs using the IMS Listener. The following
samples are included:

¹ “IMS TCP/IP Control Statements”

¹ “Sample Program Explicit-Mode” on page 182

¹ “Sample Program Implicit-Mode” on page 191

¹ “Sample Program—IMS MPP Client” on page 199

IMS TCP/IP Control Statements
This chapter contains examples of the control statements required to define and
initiate the various IMS TCP/IP components.

JCL for Linking an Implicit-Mode Server
The following JCL is an example (using an IMS-supplied procedure) of JCL that
can be used to compile and link the Assist module into an assembler language
implicit-mode server program. (Use the IMS procedure appropriate for your lan-
guage). Note the requirement for AMODE(31); the requirement for linking to the
MVS TCP/IP Socket API is satisfied by the EZAIMSAS INCLUDE statement.

//STEP1 EXEC IMSASM,MBR=your implicit-mode application

//C.SYSIN DD DSN=IMS31.APPLSRC(&MBR;),DISP=SHR

//IMSLIB DD DSN=hlq.SEZALINK,DISP=SHR

//L.SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)

// DD *

 INCLUDE IMSLIB(EZAIMSAS)

 INCLUDE IMSRES(ASMTDLI)

 MODE RMODE(24),AMODE(31)

NAME your implicit mode-application (R)

/*

JCL for Linking an Explicit-Mode Server
The following is an example (using an IMS-supplied procedure) of JCL that can be
used to compile and link an assembler language explicit-mode server program.
(Use the IMS procedure appropriate for your language). Note the requirement for
AMODE(31) and the provision for linking to the MVS TCP/IP Socket API.

//STEP1 EXEC IMSASM,MBR=your explicit application

//C.SYSIN DD DSN=IMS31.APPLSRC(&MBR;),DISP=SHR

//TCPLIB DD DSN=&hlq;.SEZATCP,DISP=SHR

//L.SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)

// DD *

 INCLUDE TCPLIB(EZASOKET)

 INCLUDE IMSRES(ASMTDLI)

 MODE RMODE(24),AMODE(31)

NAME your explicit application(R)

//

 Copyright IBM Corp. 1994, 1997 179

JCL for Starting a Message Processing Region
The following is an example of the JCL that is required to start an IMS message
processing region in which TCP/IP servers can operate. Note the STEPLIB state-
ments that point to TCP/IP and the C run-time library. A C run-time library is
required when you use the GETHOSTBYADDR or GETHOSTBYNAME call. For
more information, see the Program Directory or the section on C compilers and run
time libraries in OS/390 eNetwork Communications Server: IP API Guide.

This sample is based on the IMS procedure (DFSMPR). You might have to modify
the language run time libraries to match your programming language requirements.

// PROC SOUT=A,RGN=2M,SYS2=,

// CL1=001,CL2=000,CL3=000,CL4=000,

// OPT=N,OVLA=0,SPIE=0,VALCK=0,TLIM=00,

// PCB=000,PRLD=,STIMER=,SOD=,DBLDL=,

// NBA=,OBA=,IMSID=IMS1,AGN=,VSFX=,VFREE=,

// SSM=,PREINIT=,ALTID=,PWFI=N,

// APARM=

//*

//REGION EXEC PGM=DFSRRC00,REGION=&RGN,;

// TIME=1440,DPRTY=(12,0),

// PARM=(MSG,&CL1&CL2&CL3&CL4,;

// &OPT&OVLA&SPIE&VALCK&TLIM&PCB,;

// &PRLD,&STIMER,&SOD,&DBLDL,&NBA,;

// &OBA,&IMSID,&AGN,&VSFX,&VFREE,;

// &SSM,&PREINIT,&ALTID,&PWFI,;

// '&APARM')

//&*;

//STEPLIB DD DSN=IMS31.&SYS2;RESLIB,DISP=SHR

// DD DSN=IMS31.&SYS2;PGMLIB,DISP=SHR

// DD DSN=PLI.LL.V2R3M0.SIBMLINK,DISP=SHR

// DD DSN=PLI.LL.V2R3M0.PLILINK,DISP=SHR

// DD DSN=C370.LL.V2R2M0.SEDCLINK,DISP=SHR

//* Use the following for LE/370 C run-time libraries:

//* DD DSN=CEE.V1R3M0.SCEERUN,DISP=SHR

// DD DSN=TCPIP.SEZATCP,DISP=SHR

//PROCLIB DD DSN=IMS31.&SYS2;PROCLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=3129,RECFM=VBA),;

// SPACE=(125,(2500,100),RLSE,,ROUND)

//

JCL for Linking the IMS Listener
The following examples are JCL that can be used to link the IMS listener.

 EZAIMSCZ JCLIN

180 IP IMS Sockets Guide

 //EZAIMSCZ JOB (accounting,information),programmer.name,

 // MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A

 //**

 //*NOTE: ANY ZONE UPDATED WITH THE LINK COMMAND OR CROSS-ZONE *

 //* INFORMATION CANNOT BE PROCESSED BY SMP/E R6 OR EARLIER*

 //**

 //* *

 //* Function: Perform SMP/E LINK for IMS module *

 //* *

 //* Instructions: *

 //* Change all lower case characters to values *

 //* suitable for your installation. *

 //* *

 //* tcptgt : TCP/IP Target Zone *

 //* imszone : IMS Target Zone *

 //* *

 //* This job uses the installation procedure EZAPROC by default*

 //* If you have chosen to use DDDEFs to install TCP/IP, you *

 //* must perform the following steps: *

//* Delete or comment the 'LNKCZ EXEC PROC=EZAPROC' statement*

//* *

//* Uncomment the 'LNKCZ EXEC PROC=EZAPROCD' statement. *

//* *

//* Change the high-level qualifier 'ims' to match the *

//* high-level qualifier for your installation's IMS RESLIB *

//* data set. *

//* *

//LNKCZ EXEC PROC=EZAPROC

//*LNKCZ EXEC PROC=EZAPROCD

//**

//RESLIB DD DSN=ims.RESLIB,DISP=SHR

//**

//*

//SMPCNTL DD *

SET BDY(tcptgt). /* TCP/IP target zone */

LINK MODULE(DFSLI000)

FROMZONE(imszone) /* IMS target zone */

INTOLMOD(EZAIMSLN)

RC(LINK)=00.

 EZAIMSPL JCLIN

 Chapter 10. IMS Listener Samples 181

//LINKIMS JOB (accounting,information),programmer.name,

// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A

//**

//* *

//* THIS JOB SERVES AS AN ALTERNATIVE TO THE CROSS ZONE LINK *

//* PERFORMED BY RUNNING EZAIMSCZ. *

//* *

//* UPDATE THE JOB, SYSLMOD AND RESLIB DD CARDS TO SUIT YOUR *

//* INSTALLATION . *

//* *

//**

//LNKIMS EXEC PGM=IEWL,PARM='XREF,LIST,REUS'

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSLMOD DD DSN=tcpip.v3r1.SEZALINK,DISP=SHR

//RESLIB DD DSN=ims.RESLIB,DISP=SHR

//SYSLIN DD *

 ORDER CMCOPYR

 INCLUDE RESLIB(DFSLI000)

 INCLUDE SYSLMOD(EZAIMSLN)

 ENTRY EZAIMSLN

MODE RMODE(24) AMODE(31)

 NAME EZAIMSLN(R)

/*

Listener IMS Definitions
The following statements define the Listener as an IMS BMP application and the
PSB that it uses. Note that the name ALTPCB is required.

 PSB Definition
ALTPCB PCB TYPE=TP,MODIFY=YES

 PSBGEN PSBNAME=EZAIMSLN,IOASIZE=1000

 SSASIZE=1000,LANG=ASSEM

 Application Definition
 APPLCTN PSB=EZAIMSLN,PGMTYPE=BATCH

Sample Program Explicit-Mode
The following is an example of an explicit-mode client server program pair. The
client program name is EZAIMSC2; you can find it in hlq.SEZAINST(EZAIMSC2).
The server program name is EZASVAS2; its IMS trancode is DLSI102. You can
find the sample in hlq.SEZAINST(EZASVAS2).

 Program Flow
The client begins execution and obtains the host name and port number from
startup parameters. It then issues SOCKET and CONNECT calls to establish
connectivity to the specified host and port. Upon successful completion of the
connect, the client sends the TRM, which tells the Listener to schedule the speci-
fied transaction (DLSI102). The Listener schedules that transaction and places a
TIM on the IMS message queue. Finally, it issues a GIVESOCKET call and waits
for the server to take the socket.

182 IP IMS Sockets Guide

When the requested server (EZASVAS2) begins execution, it issues a GU call to
obtain the TIM. Using addressibility information from the TIM, it issues INITAPI and
TAKESOCKET calls. The server then sends SERVER MSG #1 to the client.

When the client receives the message, it displays SERVER MSG #1 on stdout and
then sends END CLIENT MSG #2 to the server, and displays a success message on
stdout. It then blocks on another receive() until the server responds.

The server, upon receipt of a message with the characters END as the first 3 char-
acters, sends SERVER MSG #2 back to the client and closes the socket.

When the client receives this message, it prints SERVER MSG #2 on stdout, closes
the socket, and ends.

Sample Explicit-Mode Client Program (C Language)
.* Different than part at level OLDPROD OLDVER/OLDLVL.

/*

 * Include Files.

 */

/* #define RESOLVE_VIA_LOOKUP */

#pragma runopts(NOSPIE NOSTAE)

#define lim 50

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <socket.h>

#include <netdb.h>

#include <stdio.h>

/*

 * Client Main.

 */

main(argc, argv)

int argc;

char **argv;

{

unsigned short port; /* port client will connect to */

char buf ??(lim??); /* sned receive buffers 0 -3 */

char buf1 ??(lim??);

char buf2 ??(lim??);

char buf3 ??(lim??);

struct hostent *hostnm; /* server host name information */

struct sockaddr_in server; /* server address */

int s; /* client socket */

 /*

* Check Arguments Passed. Should be hostname and port.

 */

if (argc != 3)

 {

/* fprintf(stderr, "Usage: %s hostname port\n", argvffl0“); */

printf("Usage: %s hostname port\n", argv ffl0“);

 exit(1);

 }

printf("Usage: %s hostname port\n", argv ffl0“);

 /*

* The host name is the first argument. Get the server address.

 */

 Chapter 10. IMS Listener Samples 183

hostnm = gethostbyname(argvffl1“);

if (hostnm == (struct hostent *) 0)

 {

/* fprintf(stderr, "Gethostbyname failed\n"); */

 printf("Gethostbyname failed\n");

 exit(2);

 }

 /*

* The port is the second argument.

 */

port = (unsigned short) atoi(argvffl2“);

 /*

* Put a message into the buffer.

 */

 strcpy(buf,"2000*TRNREQ*DLSI102 ");

 /*

* Put the server information into the server structure.

* The port must be put into network byte order.

 */

 server.sin_family = AF_INET;

 server.sin_port = htons(port);

server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*

* Get a stream socket.

 */

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 tcperror("Socket()");

 exit(3);

 }

 /*

* Connect to the server.

 */

if (connect(s, (struct sockaddr *)&.server, sizeof(server)) < 0)

 {

 tcperror("Connect()");

 exit(4);

 }

if (send(s, buf, sizeof(buf), 0) < 0)

 {

 tcperror("Send()");

 exit(5);

 }

printf("send one complete\n");

 /*

* The server sends message #1. Receive it into buffer1

 */

if (recv(s, buf1, sizeof(buf1), 0) < 0)

 {

 tcperror("Recv()");

 exit(6);

 }

printf("receive one complete\n");

 printf(buf1,"\n");

/* fprintf(stdout,buf1,"\n"); */

 /*

* Put end message into the buffer.

 */

184 IP IMS Sockets Guide

strcpy(buf2, "END CLIENT MESSAGE #2 ");

if (send(s, buf2, sizeof(buf2), 0) < 0)

 {

 tcperror("Send()");

 exit(7);

 }

printf("send two complete\n");

 /*

* The server sends back message #2. Receive it into buffer 2.

 */

if (recv(s, buf3, sizeof(buf3), 0) < 0)

 {

 tcperror("Recv()");

 exit(8);

 }

printf("receive two complete\n");

/* fprintf(stdout,buf3,"\n"); */

 printf(buf3,"\n");

 /*

* Close the socket.

 */

 close(s);

printf("Client Ended Successfully\n");

 exit(0);

}

Sample Explicit-Mode Server Program (Assembler Language)
EZASVAS2 CSECT ENTRY POINT

 USING EZASVAS2,BASE ADDRESSABILITY

SAVE (14,12) SAVE DL/I REGS

 LR BASE,15

ST R13,SAVEAREA+4 SAVE AREA CHAINING

LA R13,SAVEAREA NEW SAVE AREA

MVC PSBS(L'PSBS*3),0(1) SAVE PCB LIST

*

* REG 1 CONTAINS PTR TO PCB ADDR LIST

* REG 13 CONTAINS PTR TO DL/I SAVE AREA

* REG 14 CONTAINS PTR DL/I RETURN ADDRESS

* REG 15 CONTAINS PROGRAMS ENTRY POINT

*

L R2,0(R0,R1) LOAD ADDR OF I/O PCB

*

 USING IOPCB,R2 ADDRESSABILITY

*

L R3,4(R0,R1) LOAD ADDR OF ALT PCB

*

 USING ALTPCB1,R3 ADDRESSABILITY

*

L R4,8(R0,R1) LOAD ADDR OF ALT PCB

LA R4,0(R0,R4) REMOVE HIGH ORDER BIT

*

 USING ALTPCB2,R4 ADDRESSABILITY

*

 LA R5,IOAREAIN

LA R7,IOAREAOT POINT TO OUTPUT AREA FOR TCPIP

*

GUCALL DS 0H GET UNIQUE CALL

 Chapter 10. IMS Listener Samples 185

* Get Transaction-initiation message containing Sockets data *

 CALL ASMTDLI,(GUFUNCT,(2),(5)),VL GET TIM

CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES

BE GOBACK RETURN TO IMS

* ELSE NEXT INSTR

CLC STATUS(L'STATUS),=CL2' ' IF BLANK OK

BNE ERRRTN SOME WRONG HERE

* ELSE NEXT INSTR

*

 XR R6,R6 CLEAR REG

BAL R6,INITAPI GO INSERT SEGMENT

B GUCALL SET RETURN ADDRESS

*

*

INITAPI DS 0H

* Set up for INITAPI

MVC TCPNAME(L'TCPNAME),TIMTCPAS TCP Address space

MVC ASDNAME(L'ASDNAME),TIMSAS Server address space

MVC SUBTASK(L'SUBTASK),TIMSTD Server task id

* Set up for takeSOCKET

MVC NAME(L'NAME),TIMLAS Listener address space

MVC TASK(L'TASK),TIMLTD Listener task id

 MVC S(L'S),TIMSD Socket descriptor

*

 XC ERRNO(L'ERRNO),ERRNO

 XC RETCODE(L'RETCODE),RETCODE

* EX 0,*

* Issue INITAPI *

 CALL EZASOKET,(INITFUNC,MAXSOC,APITYPE,IDENT,SUBTASK, X

 MAXSNO,ERRNO,RETCODE),VL

 L R9,RETCODE

 LTR R9,R9

 BNM TAKESOC

*

INITERR DC CL21'INITAPI COMMAND ERROR'

*

TAKESOC DS 0H

* Issue takeSOCKET *

 CALL EZASOKET,(TAKEFUNC,S,CLIENT,ERRNO,RETCODE),VL

*

 L R9,RETCODE

 LTR R9,R9

 BNM SENDTEXT

*

TAKERR DC CL16'TAKESOCKET ERROR'

*Set up to send "SERVER MSG #1"

SENDTEXT DS 0H

*

 MVC S(L'S),RETCODE+2

 XC BUF(LENG),BUF

MVC BUF(13),=CL13'SERVER MSG #1'

*Translate to ASCII, if necessary

186 IP IMS Sockets Guide

* CALL EZACIC04,(BUF,LENGTH),VL

* Send "SERVER MSG #1" *

 CALL EZASOKET,(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X

 VL

 L R9,RETCODE

 LTR R9,R9

 BNM RECVTEXT

*

SENDERR1 DC CL16'SEND ERROR' Abend on error

RECVTEXT DS 0H

* Receive client message #2 *

 CALL EZASOKET,(RECVFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X

 VL

* Translate to EBCDIC if necessary

* CALL EZACIC05,(BUF,LENGTH),VL

*

 L R9,RETCODE

 LTR R9,R9

 BNM CHECKTXT

*

DC CL16'RECEIVE ERROR' Abend on error

*

CHECKTXT DS 0H

*

CLC BUF(3),=CL3'END' Test for end of message

BNE RECVTEXT If not eom, read again

*

* Set up to send shutdown message

SENDEND DS 0H

*

 XC BUF(LENG),BUF

MVC BUF(13),=CL13'SERVER MSG #2'

* Translate to ASCII if necessary

* CALL EZACIC04,(BUF,LENGTH),VL

* Send "SERVER MSG #2" to indicate shutdown *

 CALL EZASOKET,(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X

 VL

 L R9,RETCODE

 LTR R9,R9

 BNM SOCKCLOS

*

SENDERR2 DC CL16'SEND ERROR' Abend on error

*

SOCKCLOS DS 0H

* Close the socket *

 CALL EZASOKET,(CLOSFUNC,S,ERRNO,RETCODE),VL

*

 L R9,RETCODE

 LTR R9,R9

 Chapter 10. IMS Listener Samples 187

 BNM TERMAPI

*

CLOSERR DC CL16'CLOSE ERROR'

*

TERMAPI DS 0H

* Terminate the API *

 CALL EZASOKET,(TERMFUNC),VL

*

PROCTCP DS 0H Talk to TCPIP Client

* AND ALTERNATE

* SUCESSFUL MSG

 XR R9,R9 CLEAR REG

 LA R9,OTLEN LOAD LENGTH

STH R9,OTLTH STORE LEN THERE

XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA

MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG

MVC OTLITDT(L'OTLITDT),DCDATE MOVE IN DATE

MVC OTLITIME(L'OTLITIME),DCTIME MOVE IN TIME

UNPK OTDATE,CDATE MAKE TIME &. DATE

 OI OTDATE+7,X'F0' EBCDIC

 UNPK OTTIME,CTIME

 OI OTTIME+7,X'F0'

 XR R9,R9 GET READY

 L R9,INPUTMSN INPUT COUNT

 CVD R9,DLBWORK INPUT COUNT

 UNPK OTINPUTN,DLBWORK INPUT COUNT

 OI OTINPUTN+7,X'F0' FIX SIGN

 MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR

 MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL

*

*

 CALL ASMTDLI,(ISRTFUNCT,(3),(7),,USER1),VL

*

 XC IOAREAOT(L'IOAREAOT),IOAREAOT

 BR R6

*

ERRRTN DS 0H SOME WRONG HERE

*

 CALL DFS0AER,((2),BADCALL,IOAREAIN,ERROPT),VL

*

GOBACK DS 0H RETURN TO IMS

*

 L R13,4(R13)

RETURN (14,12),RC=0 RELOAD DL/I REGS &. RETURN

*

 DS 0D

PSBS DS 3F

 SPACE 1

BASE EQU 12

RC EQU 15

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

188 IP IMS Sockets Guide

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 SPACE 1

*

 DS 0F

SAVEAREA DC 18F'0'

*

GUFUNCT DC CL4'GU ' GET UNIQUE CALL

GNFUNCT DC CL4'GN ' GET NEXT

PURGFUNCT DC CL4'PURG' PURGE CALL

ISRTFUNCT DC CL4'ISRT' INSERT CALL

BADCALL DC CL8'BAD CALL' BAD LIT

ERROPT DC F'0' 1=nodump 0=dump

*

DCINMSG DC CL26' INPUT MESSAGE SUCESSFUL '

DCDATE DC CL6' DATE '

DCTIME DC CL6' TIME '

USER1 DC CL8'USER1 '

USER2 DC CL8'USER2 '

WTOR DC CL8'WTOR '

*

INITFUNC DC CL16'INITAPI'

TAKEFUNC DC CL16'TAKESOCKET'

SENDFUNC DC CL16'SEND'

RECVFUNC DC CL16'RECV'

CLOSFUNC DC CL16'CLOSE'

TERMFUNC DC CL16'TERMAPI'

SELEFUNC DC CL16'SELECT'

*

WORKTCPIP DC CL27'TCPIP WORK DATA BEGINS HERE'

APITYPE DC AL2(2)

MAXSOC DC AL2(MAX)

MAX EQU 50

MAXSNO DS F'00'

*

IDENT DS 0CL16

TCPNAME DS CL8

ASDNAME DS CL8

*

CLIENT DS 0CL38

DOMAIN DC F'2'

NAME DS CL8

TASK DS CL8

RESERVED DS 20B'0'

*

SUBTASK DS CL8

ERRNO DS F

RETCODE DS F

FLAGS DC F'0'

NBYTE DC F'50'

 Chapter 10. IMS Listener Samples 189

BUF DS CL(LENG)

LENG EQU 50

LENGTH DC AL4(LENG)

TIMEOUT DS 0D

SECONDS DS F

MILLISEC DS F

RSNDMASK DS CL(MAX)

WSNDMASK DS CL(MAX)

ESNDMASK DS CL(MAX)

RRETMASK DS CL(MAX)

WRETMASK DS CL(MAX)

ERETMASK DS CL(MAX)

S DS H

*

 DS 0D

DLBWORK DS D

 DS 0F

IOAREAIN DS 0CL56 I/O AREA INPUT

TIMLEN DS H Length of trans init msg

TIMRSV DS H reserved set to zeros

TIMID DS CL8 LISTENER ID set to LISTNR

TIMLAS DS CL8 LISTENER addr space name

TIMLTD DS CL8 LISTENER taskid for takesocket

TIMSAS DS CL8 SERVER addr space name

TIMSTD DS CL8 SERVER TASK ID user in initapi

TIMSD DS H socket given in LISTENER used in

* tasksocket

TIMTCPAS DS CL8 TCPIP addr space name

TIMDT DS H Data type of client

* ASCII(0) or EBCDIC(1)

 DS 0F

IOAREAOT DS 0CL119 I/O AREA OUTPUT

OTLTH DS BL2

OTRSV DS BL2

OTLTERM DS CL8

OTINPUTN DS CL8

OTMSG DS CL25

OTLITDT DS CL6

OTDATE DS CL8

OTLITIME DS CL6

OTTIME DS CL8

OTFILL DS CL28

OTLEN EQU (*-IOAREAOT)

*

IOPCB DSECT I/O AREA

LTERMN DS CL8 LOGICAL TERMINAL NAME

DS CL2 RESERVED FOR IMS

STATUS DS CL2 STATUS CODE

CDATE DS PL4 CURRENT DATE YYDDD

CTIME DS PL4 CURRENT TIME HHMMSST

INPUTMSN DS BL4 SEQUENCE NUMBER

MSGOUTDN DS CL8 MESSAGE OUT DESC NAME

USERID DS CL8 USER ID OF SOURCE

*

ALTPCB1 DSECT ALTERNATE PCB

ALTERM1 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS

ALSTAT1 DS CL2 STATUS CODE

190 IP IMS Sockets Guide

*

ALTPCB2 DSECT ALTERNATE PCB

ALTERM2 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS

ALSTAT2 DS CL2 STATUS CODE

*

 END

Sample Program Implicit-Mode
The following is an example of an implicit-mode client server program pair.
program name is EZAIMSC1; you can find it in hlq.SEZAINST(EZAIMSC1). The
server program name is EZASVAS1; its IMS trancode is DLSI101. The sample
program is located in hlq.SEZAINST(EZASVAS1).

 Program flow
The client begins execution and obtains the host name and port number from the
startup parameters. It then issues SOCKET and CONNECT calls to establish
connectivity to the specified host and port. Upon successful completion of the
CONNECT, the client sends the TRM, which tells the Listener to schedule the
specified transaction (DLSI101). Because implicit-mode protocol requires that all
input data segments be transmitted before the server application is scheduled, the
client follows the TRM with 2 segments of application data and an end-of-message
(EOM) segment. The Listener schedules DLSI101 and places a TIM on the IMS
message queue, followed by the 2 segments of application data. Finally, the Lis-
tener issues a GIVESOCKET call and waits for the server to take the socket.

When the requested server (EZASVAS1) begins execution, it issues a GU call to
ASMADLI. Behind the scenes, the Assist module issues its own GU and retrieves
the TIM from the IMS message queue. Using addressability information from the
TIM, it issues INITAPI and takeSOCKET calls, which establish connectivity with the
client.

Once connectivity is established, the Assist module issues a GN to the IMS
message queue, which returns the first segment of application data sent by the
client. This data is returned to the server mainline. (Thus, to the server mainline,
the first segment of application data is returned in response to its GU.) In the
sample program, the first segment of application data is the data record: THIS IS

FIRST TEXT MESSAGE SEND TO SERVER. This record is echoed back to the client by
means of an IMS ISRT call to ASMADLI. The IMS Assist module intercepts the
ISRT and issues a TCP/IP write() to echo the segment back to the client. The
server mainline then issues a GN ASMADLI (which the Assist module intercepts
and executes another GN ASMTDLI) to recieve the second segment of user data.
This segment is also echoed back to the client, using an IMS ISRT call, which the
Assist module intercepts and replaces with a TCP/IP write() to the client.

After the second client data segment, the message queue contains an EOM
segment, denoting the client's end-of-message. When the server has echoed the
second input segment to the client, it issues another GN to ASMADLI. ASMADLI
receives an end-of-message indication from the message queue and passes a QD
status code back to the server mainline.

At this point, the server mainline has completed processing that message and
issues a GU to see whether another message has arrived for that trancode. This

 Chapter 10. IMS Listener Samples 191

GU triggers the Assist module to send a final CSMOKY message to the client, indi-
cating successful completion. It then issues another GU to the IMS message queue
to determine whether another message for that trancode has been queued. If so,
the server program repeats itself; if not, the server issues a GOBACK and ends.

Sample Implicit-Mode Client Program (C Language)
.*

.* Different than part at level OLDPROD OLDVER/OLDLVL.

/*

 * Include Files.

 */

/* #define RESOLVE_VIA_LOOKUP */

#pragma runopts(NOSPIE NOSTAE)

#define lim 119

#include <manifest.h>

#include <bsdtypes.h>

#include <in.h>

#include <socket.h>

#include <netdb.h>

#include <stdio.h>

/*

 * Client Main.

 */

main(argc, argv)

int argc;

char **argv;

{

unsigned short port; /* port client will connect to */

 struct sktmsg

 {

 short msglen;

 short msgrsv;

 char msgtrn??(8??);

 char msgdat??(lim??);

 } msgbuff;

 struct datmsg

 {

 short datlen;

 short datrsv;

 char datdat??(lim??);

 } datbuff;

char buf ??(lim??); /* send receive buffer */

struct hostent *hostnm; /* server host name information */

struct sockaddr_in server; /* server address */

int s; /* client socket */

int len; /* length for send */

 /*

* Check Arguments Passed. Should be hostname and port.

 */

if (argc != 3)

 {

printf("Invalid parameter count\n");

 exit(1);

 }

printf("Usage: %s program name\n",argv??(0??));

 /*

* The host name is the first argument. Get the server address.

192 IP IMS Sockets Guide

 */

printf("Usage: %s host name\n",argv??(1??));

hostnm = gethostbyname(argvffl1“);

if (hostnm == (struct hostent *) 0)

 {

 printf("Gethostbyname failed\n");

 exit(2);

 }

 /*

* The port is the second argument.

 */

printf("Usage: %s port name\n",argv??(2??));

port = (unsigned short) atoi(argvffl2“);

 /*

* Put the server information into the server structure.

* The port must be put into network byte order.

 */

 server.sin_family = AF_INET;

 server.sin_port = htons(port);

server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*

* Get a stream socket.

 */

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 tcperror("Socket()");

 exit(3);

 }

 /*

* Connect to the server.

 */

if (connect(s, (struct sockaddr *)&.server, sizeof(server)) < 0)

 {

 tcperror("Connect()");

 exit(4);

 }

 /*

* Put a message into the buffer.

 */

 msgbuff.msgdat??(0??)='\0';

msgbuff.msgrsv = 0;

msgbuff.msglen = 20;

 strncat(msgbuff.msgtrn,"*TRNREQ*",

 lim-strlen(msgbuff.msgdat)-1);

 strncat(msgbuff.msgdat,"DLSI101 ",

 lim-strlen(msgbuff.msgdat)-1);

 len=20;

if (send(s, (char *)&.msgbuff, len, 0) < 0)

 {

 tcperror("Send()");

 exit(5);

 }

 printf("\n");

 printf(msgbuff.msgdat);

printf("send one complete\n");

 /*

* Put a text message into the buffer.

 */

 Chapter 10. IMS Listener Samples 193

 datbuff.datdat??(0??)='\0';

datbuff.datlen = 46;

datbuff.datrsv = 0;

strncat(datbuff.datdat,"THIS IS FIRST TEXT MESSAGE SEND TO SERVER ",

 lim-strlen(datbuff.datdat)-1);

 len=46;

if (send(s, (char *)&.datbuff, len, 0) < 0)

 {

 tcperror("Send()");

 exit(6);

 }

 printf("\n");

 printf(datbuff.datdat);

 printf("\n");

printf("send for first text message complete\n");

 /*

* Put a text message into the buffer.

 */

 datbuff.datdat??(0??)='\0';

datbuff.datlen = 47;

strncat(datbuff.datdat,"THIS IS 2ND TEXT MESSAGE SENDING TO SERVER",

 lim-strlen(datbuff.datdat)-1);

 len=47;

if (send(s, (char *)&.datbuff, len, 0) < 0)

 {

 tcperror("Send()");

 exit(7);

 }

 printf("\n");

 printf(datbuff.datdat);

 printf("\n");

printf("send for 2nd test message complete\n");

 /*

* Put a end message into the buffer.

 */

 datbuff.datdat??(0??)='\0';

datbuff.datlen = 4;

 strncpy(datbuff.datdat," ",lim);

 len=4;

if (send(s, (char *)&.datbuff, len, 0) < 0)

 {

 tcperror("Send()");

 exit(8);

 }

 printf("\n");

 printf(datbuff.datdat);

 printf("\n");

printf("send for end message complete\n");

 /*

* The server sends back the same message. Receive it into the

 * buffer.

 */

 strncpy(datbuff.datdat," ",lim);

if (recv(s,(char *)&.datbuff, lim, 0) < 0)

 {

 tcperror("Recv()");

 exit(9);

 }

194 IP IMS Sockets Guide

printf("receive one text complete\n");

 printf(datbuff.datdat);

 printf("\n");

 /*

* The server sends back the same message. Receive it into the

 * buffer.

 */

 strncpy(datbuff.datdat," ",lim);

if (recv(s,(char *)&.datbuff, lim, 0) < 0)

 {

 tcperror("Recv()");

 exit(10);

 }

printf("receive two text complete\n");

 printf(datbuff.datdat);

 printf("\n");

 /*

* The server sends eof message. Receive it into the

 * buffer.

 */

 strncpy(datbuff.datdat," ",lim);

if (recv(s,(char *)&.datbuff, 4, 0) < 0)

 {

 tcperror("Recv()");

 exit(11);

 }

printf("receive eof complete\n");

 printf("\n");

 printf(datbuff.datdat);

 printf("\n");

 strncpy(datbuff.datdat," ",lim);

if (recv(s,(char *)&.datbuff, 12, 0) < 0)

 {

 tcperror("Recv()");

 exit(12);

 }

printf("receive CSMOKY complete\n");

 printf("\n");

 printf(datbuff.datdat);

 printf("\n");

 /*

* Close the socket.

 */

 close(s);

printf("Client Ended Successfully\n");

 exit(0);

}

Sample Implicit-Mode Server Program (Assembler Language)
EZASVAS1 CSECT ENTRY POINT

 USING EZASVAS1,BASE ADDRESSABILITY

SAVE (14,12) SAVE DL/I REGS

 LR BASE,15

ST R13,SAVEAREA+4 SAVE AREA CHAINING

LA R13,SAVEAREA NEW SAVE AREA

MVC PSBS(L'PSBS*3),0(1) SAVE PCB LIST

*

 Chapter 10. IMS Listener Samples 195

* REG 1 CONTAINS PTR TO PCB ADDR LIST

* REG 13 CONTAINS PTR TO DL/I SAVE AREA

* REG 14 CONTAINS PTR DL/I RETURN ADDRESS

* REG 15 CONTAINS PROGRAMS ENTRY POINT

*

L R2,0(R0,R1) LOAD ADDR OF I/O PCB

*

 USING IOPCB,R2 ADDRESSABILITY

*

L R3,4(R0,R1) LOAD ADDR OF ALT PCB

*

 USING ALTPCB1,R3 ADDRESSABILITY

*

L R4,8(R0,R1) LOAD ADDR OF ALT PCB

LA R4,0(R0,R4) REMOVE HIGH ORDER BIT

*

 USING ALTPCB2,R4 ADDRESSABILITY

*

 LA R5,IOAREAIN

LA R7,IOAREAOT POINT TO OUTPUT AREA

*

GUCALL DS 0H GET UNIQUE CALL

*

*

 CALL ASMADLI,(GUFUNCT,(2),(5)),VL

*

CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES

BE GOBACK RETURN TO IMS

* ELSE NEXT INSTR

CLC STATUS(L'STATUS),=CL2' ' IF BLANK OK

BNE ERRRTN SOME WRONG HERE

* ELSE NEXT INSTR

*

 XR R6,R6 CLEAR REG

LA R6,GNCALL SET RETURN ADDRESS

BAL R6,ISRTCALL GO INSERT SEGMENT

*

GNCALL DS 0H GET NEXT CALL

*

*

 CALL ASMADLI,(GNFUNCT,(2),(5)),VL

*

CLC STATUS(L'STATUS),=CL2'QD' IF NO MORE SEGMENTS

BE GUCALL RETURN TO IMS

CLC STATUS(L'STATUS),=CL2' ' IF NO MORE SEGMENTS

BNE ERRRTN SOME WRONG HERE

*

 XR R6,R6 CLEAR REG

LA R6,GNLOOP SET RETURN ADDRESS

BAL R6,ISRTCALL GO INSERT SEGMENT

*

GNLOOP B GNCALL

*

ISRTCALL DS 0H INSERT - WRITE TO TERMINAL

* AND ALTERNATE

* SUCESSFUL MSG

 XR R9,R9 CLEAR REG

 LA R9,OTLEN LOAD LENGTH

196 IP IMS Sockets Guide

STH R9,OTLTH STORE LEN THERE

XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA

MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG

 MVC OTLITDT(L'OTLITDT),DCDATE " " DATE

 MVC OTLITIME(L'OTLITIME),DCTIME " " TIME

UNPK OTDATE,CDATE MAKE TIME &. DATE

 OI OTDATE+7,X'F0' EBCDIC

 UNPK OTTIME,CTIME

 OI OTTIME+7,X'F0'

 XR R9,R9 GET READY

 L R9,INPUTMSN INPUT COUNT

 CVD R9,DLBWORK INPUT COUNT

 UNPK OTINPUTN,DLBWORK INPUT COUNT

 OI OTINPUTN+7,X'F0' FIX SIGN

 MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR

 MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL

*

* For LTERM USER1....

*

 CALL ASMADLI,(ISRTFUNCT,(2),(7)),VL

*

* For LTERM USER2....

*

 XC IOAREAOT(L'IOAREAOT),IOAREAOT

 BR R6

*

ERRRTN DS 0H SOME WRONG HERE

*

 CALL DFS0AER,((2),BADCALL,IOAREAIN,ERROPT),VL

*

GOBACK DS 0H RETURN TO IMS

*

 L R13,4(R13)

RETURN (14,12),RC=0 RELOAD DL/I REGS &. RETURN

*

 DS 0D

PSBS DS 3F

 SPACE 1

BASE EQU 12

RC EQU 15

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 SPACE 1

*

 Chapter 10. IMS Listener Samples 197

 DS 0F

SAVEAREA DC 18F'0'

GUFUNCT DC CL4'GU ' GET UNIQUE CALL

GNFUNCT DC CL4'GN ' GET NEXT

PURGFUNCT DC CL4'PURG' PURGE CALL

ISRTFUNCT DC CL4'ISRT' INSERT CALL

BADCALL DC CL8'BAD CALL' BAD LIT

ERROPT DC F'1' 1=NODUMP 2=DUMP

DCINMSG DC CL26' INPUT MESSAGE SUCESSFUL '

DCDATE DC CL6' DATE '

DCTIME DC CL6' TIME '

USER1 DC CL8'USER1 '

USER2 DC CL8'USER2 '

WTOR DC CL8'WTOR '

*

 DS 0D

DLBWORK DS D

 DS 0F

IOAREAIN DS CL119 I/O AREA INPUT

 DS 0F

IOAREAOT DS 0CL119 I/O AREA OUTPUT

OTLTH DS BL2

OTRSV DS BL2

OTLTERM DS CL8

OTINPUTN DS CL8

OTMSG DS CL25

OTLITDT DS CL6

OTDATE DS CL8

OTLITIME DS CL6

OTTIME DS CL8

OTFILL DS CL46

OTLEN EQU (*-IOAREAOT)

*

IOPCB DSECT I/O AREA

LTERMN DS CL8 LOGICAL TERMINAL NAME

DS CL2 RESERVED FOR IMS

STATUS DS CL2 STATUS CODE

CDATE DS PL4 CURRENT DATE YYDDD

CTIME DS PL4 CURRENT TIME HHMMSST

INPUTMSN DS BL4 SEQUENCE NUMBER

MSGOUTDN DS CL8 MESSAGE OUT DESC NAME

USERID DS CL8 USER ID OF SOURCE

*

ALTPCB1 DSECT ALTERNATE PCB

ALTERM1 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS

ALSTAT1 DS CL2 STATUS CODE

*

ALTPCB2 DSECT ALTERNATE PCB

ALTERM2 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS

ALSTAT2 DS CL2 STATUS CODE

*

*

 END

198 IP IMS Sockets Guide

Sample Program—IMS MPP Client
Most of the discussion in this book assumes that the IMS system is the server;
however, some applications require that the server be a TCP/IP host. The following
is an example of a program in which the client is an IMS MPP, and the server is a
TCP/IP host.

For simplicity, we have coded both client and server to execute on an MVS host.
The client (EZAIMSC3) is initated by a 3270-driven IMS MPP; the server
(EZASVAS3) is a TSO job which is already running when the client starts.

The samples are located in hlq.SEZAINST(EZAIMSC3) and
hlq.SEZAINST(EZASVAS3).

 Program Flow
A TSO Submit command is used to start the server. Once started, it executes the
TCP/IP connection sequence for an iterative server (INITAPI, SOCKET, BIND,
LISTEN, SELECT, and ACCEPT) and then waits for the client to request con-
nection.

Note that the BIND call returns a socket descriptor which is then used to listen for a
connection request. The ACCEPT call also returns a socket descriptor, which is
used for the application data connection. Meanwhile, the original listener socket is
available to receive additional connection requests.

The client is started by calling an IMS transaction which, in turn, executes the
TCP/IP connection sequence for a client (INITAPI, SOCKET, and CONNECT).

Upon receiving the connection request from the client, the server issues a READ
and waits for the client to WRITE the initial message. The server contains a
READ/WRITE loop which echoes client transmissions until an "END" message is
received. When this message is received, it sets a 'last record' switch, echoes the
end message to the client, and terminates.

Note that in order for the server to terminate, it must close two sockets: one -- the
socket on which it listens for connection requests; the other -- the socket on which
the data transfers took place.

The client and server both include Write To Operator macros, which allow you to
monitor progress through the application logic flow. At the end of this appendix you
will find a sample of the WTO output from the client and the server.

Sample Client Program for Non-IMS server
EZAIMSC3 CSECT

EZAIMSC3 AMODE ANY

EZAIMSC3 RMODE ANY

GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION

&TRACE SETB 1 1=TRACE ON 0=TRACE OFF

GBLB &SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE

&SUBTR SETB 0 1=SUBTRACE ON 0=SUBTRACE OFF

* *

* MODULE NAME: EZAIMSC3 *

* *

 Chapter 10. IMS Listener Samples 199

* MODULE FUNCTION: Sample program of an IMS MPP TCP client. This *

* module connects with a TCP/IP server and *

* exchanges msgs with it. The number of msgs *

* exchanged is determined by a constant and *

* the length of the messages is also determined *

* by a constant. *

* Note: If an error occurs during processing, this *

* module will send an error message to the system *

* console and then Abends0c1. *

* *

* LANGUAGE: Assembler *

* *

* ATTRIBUTES: Reusable *

* *

* INPUT: None *

* *

SOC0000 DS 0H

USING *,R15 Tell assembler to use reg 15

B SOC00100 Branch to startup address

 DC CL16'IMSTCPCLEYECATCH'

BUFLEN EQU 1000 Set length of I/O buffers

R4BASE DC A(SOC0000+4096)

* Control Variables for this program *

SOCMSGN DC F'005' Number of messages to be exchanged

SOCMSGL DC F'200' Length of messages to be exchanged

SERVPORT DC H'5000' Port Address of Server

SOCTASK DC F'0' Task number for this client

SERVLEN DC H'0' Length of server's name

SERVNAME DC CL24' ' Internet name of server

SENDINT DC CL8'00000010' Delay interval between sends

* Constants used for call functions *

INITAPI DC CL16'INITAPI'

GETHSTID DC CL16'GETHOSTID'

SOCKET DC CL16'SOCKET'

GHBN DC CL16'GETHOSTBYNAME'

CONNECT DC CL16'CONNECT'

READ DC CL16'READ'

WRITE DC CL16'WRITE'

CLOSE DC CL16'CLOSE'

TERMAPI DC CL16'TERMAPI'

* Beginning of program execution statements *

SOC00100 DS 0H Beginning of program

STM R14,R12,12(R13) Save callers registers

LR R3,R15 Move base reg to R3

L R4,R4BASE Add R4 as second base reg

DROP R15 Tell assembler to drop R15 as base

USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X

 base registers

LR R7,R13 Save address of previous save area

LA R12,SOCSTG Move address of program stg to R12

LA R13,SOCSTGL Move length of program stge to R13

200 IP IMS Sockets Guide

 SR R14,R14 Clear R14

 SR R15,R15 Clear R15

MVCL R12,R14 Clear program storage

LA R13,SOCSTG Move address of program stg to R13

USING SOCSTG,R13 Tell Assembler about storage

ST R7,SOCSAVEL Save address of lower save area

ST R13,8(R7) Complete save area chain

SOC00200 DS 0H

*

* Build message for console

*

MVC MSG1D,MSG1C Initialize first part of message

L R0,SOCTASK Get task number

CVD R0,DWORK Convert task number to decimal

UNPK MSGTD,DWORK+5(3) Convert decimal to character

 OI MSGTD+4,X'F0' Clear sign

MVC MSG2D,MSG2CS Move 'Started' to message

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

MVC WTOLIST,WTOPROT Move prototype WTO to list form

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

*

* Issue INITAPI Call to connect to interface

*

MVC SOCTASKC(3),=CL3'SOC' Build Task Identifier

 MVC SOCTASKC+3(5),MSGTD

MVC MSG2D,MSG2C1 Move 'INITAPI'to message

MVC MAXSOC,=H'50' Initialize MAXSOC field

MVC ASTCPNAM,=CL8'TCPV3 ' Initialize TCP Name

MVC ASCLNAME,=CL8'TCPCLINT' Initialize AS Name

*

 CALL EZASOKET, X

 (INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO, X

 RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE01

* TRACE ENTRY FOR INITAPI TRACE TYPE = 1

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE01 ANOP

*

* Issue GETHOSTID Call to obtain internet address of host

*

MVC MSG2D,MSG2C8 Move 'GTHSTID'to message

*

CALL EZASOKET, Issue GETHOSTID Call X

 (GETHSTID,SERVIADD), X

VL Specify Variable parameter list

*

 AIF (NOT &TRACE).TRACE08

* TRACE ENTRY FOR GETHOSTID TRACE TYPE = 8

 Chapter 10. IMS Listener Samples 201

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE08 ANOP

*

* Issue SOCKET Call to obtain a socket descriptor

*

MVC MSG2D,MSG2C2 Move 'SOCKET' to message

MVC AF,=F'2' Address Family = Internet

MVC SOCTYPE,=F'1' Type = Stream Sockets

XC PROTO,PROTO Clear protocol field

*

CALL EZASOKET, Issue SOCKET Call X

 (SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE02

* TRACE ENTRY FOR SOCKET TRACE TYPE = 2

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE02 ANOP

*

* Get socket descriptor number

*

L R6,RETCODE Descriptor number returned

 STH R6,SOCDESC Save it

*

* Issue CONNECT Command to Connect to Server

*

 MVC SSOCAF,=H'2' Set AF=INET

MVC SSOCPORT,SERVPORT Move Port Number

MVC SSOCINET,SERVIADD Move Internet Address of Server

MVC MSG2D,MSG2C4 Move 'CONNECT' to message

*

CALL EZASOKET, Issue CONNECT Call X

 (CONNECT,SOCDESC,SERVSOC,ERRNO,RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE04

* TRACE ENTRY FOR CONNECT TRACE TYPE = 4

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE04 ANOP

*

* Send initial message to server

*

MVC BUFFER(L'MSG1),MSG1 Move Message to Buffer

202 IP IMS Sockets Guide

LA R6,L'MSG1 Get length of message

ST R6,DATALEN Put length in data field

MVC MSG2D,MSG2C5 Move 'WRITE' to message

*

CALL EZASOKET, Issue WRITE Call X

 (WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X

 VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE05

* TRACE ENTRY FOR WRITE TRACE TYPE = 5

MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

 MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK MSG4D,DWORK+4(4) Unpack it

OI MSG4D+6,X'F0' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE05 ANOP

*

* Read response to initial message

*

MVC MSG2D,MSG2C6 Move 'READ' to message

LA R6,L'BUFFER Get length of buffer

ST R6,DATALEN Put length in data field

*

CALL EZASOKET, Issue READ Call X

 (READ,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &.TRACE).TRACE06

* TRACE ENTRY FOR READ TRACE TYPE = 6

MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

 MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK MSG4D,DWORK+4(4) Unpack it

OI MSG4D+6,X'F0' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE06 ANOP

*

* Send second message to server

*

MVC BUFFER(L'MSG2),MSG2 Move Message to Buffer

LA R6,L'MSG2 Get length of message

ST R6,DATALEN Put length in data field

 Chapter 10. IMS Listener Samples 203

MVC MSG2D,MSG2C5 Move 'WRITE' to message

*

CALL EZASOKET, Issue WRITE Call X

 (WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X

 VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE15

* TRACE ENTRY FOR WRITE TRACE TYPE = 5

MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

 MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK MSG4D,DWORK+4(4) Unpack it

OI MSG4D+6,X'F0' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE15 ANOP

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

*

* Read response to second message

*

MVC MSG2D,MSG2C6 Move 'READ' to message

*

CALL EZASOKET, Issue READ Call X

 (READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

*

 AIF (NOT &TRACE).TRACE16

* TRACE ENTRY FOR READ TRACE TYPE = 6

MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

 MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK MSG4D,DWORK+4(4) Unpack it

OI MSG4D+6,X'F0' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE16 ANOP

*

* Send End message to server

*

MVC BUFFER(L'ENDMSG),ENDMSG Move end message to buffer

LA R6,L'ENDMSG Get length of message

ST R6,SOCMSGL Put length in length field

204 IP IMS Sockets Guide

MVC MSG2D,MSG2C5 Move 'WRITE' to message

*

CALL EZASOKET, Issue WRITE Call X

 (WRITE,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X

 VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE25

* TRACE ENTRY FOR WRITE TRACE TYPE = 5

MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

 MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK MSG4D,DWORK+4(4) Unpack it

OI MSG4D+6,X'F0' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE25 ANOP

*

* Read response to end message

*

MVC MSG2D,MSG2C6 Move 'READ' to message

*

CALL EZASOKET, Issue READ Call X

 (READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE26

* TRACE ENTRY FOR READ TRACE TYPE = 6

MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

 MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK MSG4D,DWORK+4(4) Unpack it

OI MSG4D+6,X'F0' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE26 ANOP

*

* Close socket

*

MVC MSG2D,MSG2C7 Move 'CLOSE' to message

*

CALL EZASOKET, Issue CLOSE Call X

 (CLOSE,SOCDESC,ERRNO,RETCODE), X

VL Specify variable parameter list

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

 Chapter 10. IMS Listener Samples 205

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE07

* TRACE ENTRY FOR CLOSE TRACE TYPE = 7

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE07 ANOP

*

* Terminate Connection to API

*

CALL EZASOKET, Issue TERMAPI Call X

 (TERMAPI), X

VL Specify variable parameter list

*

* Issue console message for task termination

*

MVC MSG2D,MSG2CE Move 'Ended' to message

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

*

* Return to Caller

*

 L R13,SOCSAVEL

 LM R14,R12,12(R13)

 BR R14

*

* Write error message to operator and ABENDS0C1

*

SOCERR DS 0H Write error message to operator

MVC ERR1D,MSG1D 'IMSTCPCL, TASK #'

MVC ERRTD,MSGTD Move task number to message

 MVC ERR2D,MSG2D Call Type

MVC ERR3D,ERR3C ' RETCODE= '

MVI ERR3S,C'-' Move sign which is always minus

MVC ERR5D,ERR5C ' ERRNO= '

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK ERR4D,DWORK+4(4) Unpack it

OI ERR4D+6,X'F0' Correct the sign

L R6,ERRNO Get errno value

CVD R6,DWORK Convert it to decimal

 UNPK ERR6D,DWORK+4(4) Unpack it

OI ERR6D+6,X'F0' Correct the sign

LA R6,ERR Put text address in R6

MVC ERRLEN,=AL2(ERRTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

ABEND DS 0H

 DC H'0' Force ABEND

WTOPROT WTO TEXT=, List form of WTO Macro X

 MF=L

WTOPROTL EQU *-WTOPROT Length of WTO Prototype

MSG1C DC CL17'IMSTCPCL, TASK # '

MSG2CS DC CL8' STARTED'

MSG2CE DC CL8' ENDED '

206 IP IMS Sockets Guide

ERR3C DC CL10' RETCODE= '

ERR5C DC CL8' ERRNO= '

MSG2C1 DC CL8' INITAPI'

MSG2C2 DC CL8' SOCKET '

MSG2C4 DC CL8' CONNECT'

MSG2C5 DC CL8' WRITE '

MSG2C6 DC CL8' READ '

MSG2C7 DC CL8' CLOSE '

MSG2C8 DC CL8' GTHSTID'

MSG2C35 DC CL8' SYNC '

MSG1 DC CL16'CLIENT MESSAGE 1' First msg to server

MSG2 DC CL16'CLIENT MESSAGE 2' 2nd msg to server

ENDMSG DS 0CL48 End Message for Server

DC CL3'END' End indicator for SRV1

DC CL45' ' Pad with blanks

 DS 0D

SOCSTG DS 0F PROGRAM STORAGE

SOCSAVE DS 0F Save Area

SOCSAVE1 DS F Word for high-level languages

SOCSAVEL DS F Address of previous save area

SOCSAVEH DS F Address of next save area

SOCSAV14 DS F Reg 14

SOCSAV15 DS F Reg 15

SOCSAV0 DS F Reg 0

SOCSAV1 DS F Reg 1

SOCSAV2 DS F Reg 2

SOCSAV3 DS F Reg 3

SOCSAV4 DS F Reg 4

SOCSAV5 DS F Reg 5

SOCSAV6 DS F Reg 6

SOCSAV7 DS F Reg 7

SOCSAV8 DS F Reg 8

SOCSAV9 DS F Reg 9

SOCSAV10 DS F Reg 10

SOCSAV11 DS F Reg 11

SOCSAV12 DS F Reg 12

SOCSAV13 DS F Reg 13

MAXSOC DS H Maximum number of sockets for this X

 application

SOCTASKC DS CL8 Character task identifier

SOCDESC DS H Socket Descriptor Number

HISOC DS F Highest socket descriptor available

AF DS F Address family for socket call

SOCTYPE DS F Type of socket

NS DS F New socket number for socket call

SERVAL DS 12F Alias array for server

SERVSOC DS 0F Socket Address of Server

SSOCAF DS H Address Family of Server = 2

SSOCPORT DS H Port number for Server

SSOCINET DS F Internet address for Server

 DC D'0' Reserved

MSG DS 0F Message area

MSGLEN DS H Length of message

MSG1D DS CL17 'IMSTCPCL, TASK #'

MSGTD DS CL5 Task Number

MSG2D DS CL8 Last part of message

MSGE EQU * End of message

MSGTL EQU MSGE-MSG1D Length of message text

 Chapter 10. IMS Listener Samples 207

MSG3D DS CL10 ' RETCODE = '

MSG3S DS C Sign which is always -

MSG4D DS CL7 Return code

ERR DS 0F Error message area

ERRLEN DS H Length of message

ERR1D DS CL17 'IMSTCPCL, TASK #'

ERRTD DS CL5 Task Number

ERR2D DS CL8 Last part of message

ERR3D DS CL10 ' RETCODE = '

ERR3S DS C Sign which is always -

ERR4D DS CL7 Return code

ERR5D DS CL8 ' ERRNO ='

ERR6D DS CL7 Error number

ERRE EQU * End of message

ERRTL EQU ERRE-ERR1D Length of message text

BUFFER DS CL(BUFLEN) Socket I/O Buffer

DATALEN DS F Length of buffer data

DWORK DS D Double word work area

RECNO DS PL4 Record Number

ERRNO DS F Error number returned from call

RETCODE DS F Return code from call

PROTO DS F Protocol field for socket

ASIDENT DS 0F Address space identifier for initapi

ASTCPNAM DS CL8 Name of TCP/IP Address Space

SERVIADD DS F Internet address for Server

ASCLNAME DS CL8 Our name as known to TCP/IP

WTOLIST DS CL(WTOPROTL) List form of WTO Macro

SOCSTGE EQU * End of Program Storage

SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage

 LTORG

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

GWABAR EQU 13

 END

Sample Server Program for IMS MPP Client
EZASVAS3 CSECT

EZASVAS3 AMODE ANY

EZASVAS3 RMODE ANY

GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION

&TRACE SETB 1 1=TRACE ON 0=TRACE OFF

GBLB &SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE

&SUBTR SETB 0 1=SUBTRACE ON 0=SUBTRACE OFF

208 IP IMS Sockets Guide

* *

* MODULE NAME: EZASVAS3 *

* *

* MODULE FUNCTION: Test module for Extended Sockets. This module *

* accepts connection request from IMS client *

* program named EZAIMSC3. *

* *

* LANGUAGE: Assembler *

* *

* ATTRIBUTES: Non-reusable *

* *

* *

* *

SOC0000 DS 0H

USING *,R15 Tell assembler to use reg 15

B SOC00100 Branch to startup address

 DC CL14'SERVEREYECATCH'

ASIDENT DS 0F Address Space Identifier for initapi

ASTCPNAM DC CL8'TCPV3 ' Name of TCP/IP Address Space

ASCLNAME DC CL8'CALLSRVER' Our name as known to TCP/IP

TIMEOUT DS 0F Timeout value for select

TIMESEC DC F'180' Timeout value in seconds

TIMEMSEC DC F'0' Timeout value in milliseconds

BUFLEN EQU 1000 Set length of I/O buffers

R4BASE DC A(SOC0000+4096)

SOC00100 DS 0H Beginning of program

STM R14,R12,12(R13) Save callers registers

LR R3,R15 Move base reg to R3

L R4,R4BASE Add R4 as second base reg

DROP R15 Tell assembler to drop R15 as base

USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X

 base registers

LA R6,SOCSTG Clear program storage

 LA R7,SOCSTGL

 SR R14,R14

 SR R15,R15

 MVCL R6,R14

ST R13,SOCSAVEH Save address of higher save area

LA R7,SOCSAVE Complete save area chain

ST R7,8(R13) Tell caller where our save area is

LA R13,SOCSAVE Point R13 at our save area

MVI ENDSW,X'00' Clear end-of-transmission switch

*

* Build message for console

*

MVC MSG1D,MSG1C Initialize first part of message

MVC MSGTD,=CL5'00000' Move subtask number from clientid

MVC MSG2D,MSG2CS Move 'Started' to message

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

MVC WTOLIST,WTOPROT Move prototype WTO to list form

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

*

* Issue INITAPI Call to connect to interface

*

 Chapter 10. IMS Listener Samples 209

MVC SOCTASKC,=CL8'TAS00000' Give subtask a name

MVC MSG2D,MSG2C00 Move 'INITAPI'to message

MVC MAXSOC,=H'50' Initialize MAXSOC parameter

*

 CALL EZASOKET, X

 (INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO, X

 RETCODE), X

 VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE00

* TRACE ENTRY FOR INITAPI TRACE TYPE = 0

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE00 ANOP

*

* Issue SOCKET Call to obtain socket to listen on

*

MVC MSG2D,MSG2C25 Move 'SOCKET'to message

MVC AF,=F'2' Initialize AF to '2' (INET)

MVC SOCTYPE,=F'1' Specify stream sockets

MVC PROTO,=F'0' Protocol is ignored for stream

*

CALL EZASOKET, Issue SOCKET CALL X

 (SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE), X

 VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminate

 AIF (NOT &TRACE).TRACE25

* TRACE ENTRY FOR SOCKET TRACE TYPE = 25

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE25 ANOP

L R0,RETCODE Get descriptor number of socket

 STH R0,LISTSOC Save it

*

* Issue GETHOSTID call to determine our internet address

*

MVC MSG2D,MSG2C07 Move 'GETHSTID'to message

*

CALL EZASOKET, Issue GETHOSTID Call X

 (GETHSTID,RETCODE),VL

*

 AIF (NOT &TRACE).TRACE07

* TRACE ENTRY FOR SOCKET TRACE TYPE = 07

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE07 ANOP

210 IP IMS Sockets Guide

L R0,RETCODE Get internet address of host

 ST R0,SINETADR Save it

*

* Issue BIND call to establish port

*

MVC MSG2D,MSG2C02 Move 'BIND' to message

MVC SPORT,=H'5000' Move port number to structure

MVC SAF,=H'2' Move AF (INET) to structure

*

CALL EZASOKET, Issue BIND Call X

 (BIND,LISTSOC,SOCKNAME,ERRNO,RETCODE), X

 VL

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

*

 AIF (NOT &TRACE).TRACE02

* TRACE ENTRY FOR BIND TRACE TYPE = 02

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE02 ANOP

*

*

* Issue LISTEN call to establish backlog of connection requests

*

MVC MSG2D,MSG2C13 Move 'LISTEN' to message

MVC BACKLOG,=F'5' Set backlog to 5

*

CALL EZASOKET, Issue LISTEN Call X

 (LISTEN,LISTSOC,BACKLOG,ERRNO,RETCODE),VL

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminate

*

 AIF (NOT &TRACE).TRACE13

* TRACE ENTRY FOR LISTEN TRACE TYPE = 13

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE13 ANOP

*

* Issue SELECT call to wait on connection request

*

MVC MSG2D,MSG2C19 Move 'SELECT' to message

MVC SELSOC,=F'31' Maximum number of sockets

MVC WSNDMASK,=F'0' Not checking for writes

MVC ESNDMASK,=F'0' Not checking for exceptions

LA R0,1 Put 1 in rightmost position of R0

LH R1,LISTSOC Put listener socket number in R1

SLL R0,0(R1) Create mask for read

ST R0,RSNDMASK Put value in mask field

*

CALL EZASOKET, Issue SELECT Call X

 (SELECT,SELSOC,TIMEOUT,RSNDMASK,WSNDMASK,ESNDMASK, X

 RRETMASK,WRETMASK,ERETMASK,ERRNO,RETCODE), X

 Chapter 10. IMS Listener Samples 211

 VL

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

*

 AIF (NOT &TRACE).TRACE19

* TRACE ENTRY FOR SELECT TRACE TYPE = 19

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE19 ANOP

*

* Issue ACCEPT call to accept a new connection

*

MVC MSG2D,MSG2C01 Move 'ACCEPT' to message

MVC NS,=F'4' Use socket 4 for connection socket

*

CALL EZASOKET, Issue ACCEPT Call X

 (ACCEPT,LISTSOC,SOCKNAME,ERRNO,RETCODE), X

 VL

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

*

 AIF (NOT &TRACE).TRACE01

* TRACE ENTRY FOR ACCEPT TRACE TYPE = 01

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE01 ANOP

L R0,RETCODE Get descriptor number of new socket

STH R0,CONNSOC Save it for future use

*

* Issue READ call to get first message from client

*

LA R6,L'BUFFER Get length of buffer

ST R6,DATALEN Put length in data field

MVC MSG2D,MSG2C14 Move 'READ' to message

XC FLAGS,FLAGS Clear the FLAGS field

*

CALL EZASOKET, Issue READ Call X

 (READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

*

 AIF (NOT &TRACE).TRAC14A

* TRACE ENTRY FOR READ TRACE TYPE = 14

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRAC14A ANOP

*

* Send Initial Message to client to continue transaction

*

212 IP IMS Sockets Guide

MVC BUFFER(L'RESPMSG),RESPMSG Move Message to Buffer

LA R6,L'RESPMSG Get length of message

ST R6,DATALEN Put length in data field

XC FLAGS,FLAGS Clear FLAGS field

MVC MSG2D,MSG2C26 Move 'WRITE' to message

*

CALL EZASOKET, Issue WRITE call X

 (WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRAC26A

* TRACE ENTRY FOR WRITE TRACE TYPE = 22

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRAC26A ANOP

SOC0300 DS 0H

*

* Read Message from Client

*

MVC MSG2D,MSG2C14 Move 'READ' to message

LA R0,L'BUFFER Get length of buffer

ST R0,DATALEN Use it for data length

XC FLAGS,FLAGS Clear FLAGS field

*

 CALL EZASOKET, X

 (READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BNH SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRAC14B

* TRACE ENTRY FOR RECV TRACE TYPE = 14

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRAC14B ANOP

CLC BUFFER(3),=CL3'END' Was this last record

 BNE SOC0350 No

MVI ENDSW,C'E' Yes, set end-of-transmission switch

SOC0350 DS 0H

*

* Send Response to Client

*

MVC MSG2D,MSG2C26 Move 'WRITE' to message

MVC DATALEN,RETCODE Get message length from previous call

XC FLAGS,FLAGS Clear FLAGS field

*

 CALL EZASOKET, X

 (WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BNH SOCERR Yes, go display error and terminat

 Chapter 10. IMS Listener Samples 213

 AIF (NOT &TRACE).TRAC26B

* TRACE ENTRY FOR SEND TRACE TYPE = 26

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRAC26B ANOP

*

CLI ENDSW,C'E' Have we received last record

BNE SOC0300 No, so go back and do another

*

* Close sockets

*

MVC MSG2D,MSG2C03 Move 'CLOSE1' to message

*

CALL EZASOKET, Issue CLOSE call for connection skt X

 (CLOSE,CONNSOC,ERRNO,RETCODE),VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRACE03

* TRACE ENTRY FOR CLOSE TRACE TYPE = 3

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRACE03 ANOP

*

MVC MSG2D,MSG2C03A Move 'CLOSE2' to message

*

CALL EZASOKET, Issue CLOSE call for listen socket X

 (CLOSE,LISTSOC,ERRNO,RETCODE),VL

*

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it less than zero

BL SOCERR Yes, go display error and terminat

 AIF (NOT &TRACE).TRAC103

* TRACE ENTRY FOR CLOSE TRACE TYPE = 3

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

.TRAC103 ANOP

*

* Terminate Connection to API

*

 CALL EZASOKET, X

 (TERMAPI),VL

*

* Issue console message for task termination

*

MVC MSG2D,MSG2CE Move 'Ended' to message

LA R6,MSG Put text address in R6

MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

*

214 IP IMS Sockets Guide

* Return to Caller

*

 L R13,SOCSAVEH

 LM R14,R12,12(R13)

 BR R14

*

* Write error message to operator

*

SOCERR DS 0H Write error message to operator

MVC ERR1D,MSG1D 'SERVER, TASK #'

MVC ERRTD,MSGTD Move task number to message

 MVC ERR2D,MSG2D Call Type

MVC ERR3D,ERR3C ' RETCODE= '

MVI ERR3S,C'-' Move sign which is always minus

MVC ERR5D,ERR5C ' ERRNO= '

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

 UNPK ERR4D,DWORK+4(4) Unpack it

OI ERR4D+6,X'F0' Correct the sign

L R6,ERRNO Get errno value

CVD R6,DWORK Convert it to decimal

 UNPK ERR6D,DWORK+4(4) Unpack it

OI ERR6D+6,X'F0' Correct the sign

LA R6,ERR Put text address in R6

MVC ERRLEN,=AL2(ERRTL) Put length of text in msg hdr.

WTO TEXT=(R6), Write message to operator X

 MF=(E,WTOLIST)

*

* Return to Caller

*

* L R13,SOCSAVEH

* LM R14,R12,12(R13)

* BR R14

ABEND DS 0H

 DC H'0' Force ABEND

* Constants *

WTOPROT WTO TEXT=, List form of WTO Macro X

 MF=L

WTOPROTL EQU *-WTOPROT Length of WTO Prototype

MSG1C DC CL17'SERVER, TASK # '

MSG2CS DC CL8' STARTED'

MSG2CE DC CL8' ENDED '

ERR3C DC CL10' RETCODE= '

ERR5C DC CL8' ERRNO= '

MSG2C00 DC CL8' INITAPI'

MSG2C01 DC CL8' ACCEPT '

MSG2C02 DC CL8' BIND '

MSG2C03 DC CL8' CLOSE '

MSG2C03A DC CL8' CLOSE2 '

MSG2C07 DC CL8' GTHSTID'

MSG2C13 DC CL8' LISTEN '

MSG2C14 DC CL8' READ '

MSG2C19 DC CL8' SELECT '

MSG2C25 DC CL8' SOCKET '

MSG2C26 DC CL8' WRITE '

MSG2C32 DC CL8' TAKESKT'

 Chapter 10. IMS Listener Samples 215

RESPMSG DC CL50'FIRST RESPONSE FROM SERVER '

* Constants used for call types *

INITAPI DC CL16'INITAPI'

BIND DC CL16'BIND'

LISTEN DC CL16'LISTEN'

ACCEPT DC CL16'ACCEPT'

READ DC CL16'READ'

SELECT DC CL16'SELECT'

WRITE DC CL16'WRITE'

SOCKET DC CL16'SOCKET'

CLOSE DC CL16'CLOSE'

GETHSTID DC CL16'GETHOSTID'

TERMAPI DC CL16'TERMAPI'

* Program Storage Area *

SOCSTG DS 0F PROGRAM STORAGE

SOCSAVE DS 0F Save Area

SOCSAVE1 DS F Word for high-level languages

SOCSAVEH DS F Address of previous save area

SOCSAVEL DS F Address of next save area

SOCSAV14 DS F Reg 14

SOCSAV15 DS F Reg 15

SOCSAV0 DS F Reg 0

SOCSAV1 DS F Reg 1

SOCSAV2 DS F Reg 2

SOCSAV3 DS F Reg 3

SOCSAV4 DS F Reg 4

SOCSAV5 DS F Reg 5

SOCSAV6 DS F Reg 6

SOCSAV7 DS F Reg 7

SOCSAV8 DS F Reg 8

SOCSAV9 DS F Reg 9

SOCSAV10 DS F Reg 10

SOCSAV11 DS F Reg 11

SOCSAV12 DS F Reg 12

SOCSAV13 DS F Reg 13

PARMADDR DS F Address of parameter list

GWAADDR DS F Address of Global Work Area

TIEADDR DS F Address of Task Information Element

LISTSOC DS H Socket number used for listen

CONNSOC DS H Socket number created by accept

SOCMSGN DS F Number of messages to be exchanged

SOCMSGL DS F Length of messages to be exchanged

SOCTASKC DS CL8 Character task identifier

HISOC DS F Highest socket descriptor available

SERVLEN DS H

SERVSOC DS 0F Socket Address of Server

SERVAF DS H Address Family of Server = 2

SERVPORT DS H Port Address of Server

SERVIADD DS F Internet Address of Server

ENDSW DS C End of transmission switch

MSG DS 0F Message area

MSGLEN DS H Length of message

MSG1D DS CL17 'SERVER, TASK #'

MSGTD DS CL5 Task Number

216 IP IMS Sockets Guide

MSG2D DS CL8 Last part of message

MSGE EQU * End of message

MSGTL EQU MSGE-MSG1D Length of message text

ERR DS 0F Error message area

ERRLEN DS H Length of message

ERR1D DS CL17 'SERVER, TASK #'

ERRTD DS CL5 Task Number

ERR2D DS CL8 Last part of message

ERR3D DS CL10 ' RETCODE = '

ERR3S DS C Sign which is always -

ERR4D DS CL7 Return code

ERR5D DS CL8 ' ERRNO ='

ERR6D DS CL7 Error number

ERRE EQU * End of message

ERRTL EQU ERRE-ERR1D Length of message text

* Name structure used by bind *

SOCKNAME DS 0F Socket Name structure

SAF DS H The address family of the socket

SPORT DS H The port number of this socket

SINETADR DS F The internet address of this socket

 DS D Reserved

SOCKNAML EQU *-SOCKNAME Length of SOCKNAME Structure

CLIENTID DS 0F Client Id structure

CDOMAIN DS F The domain of this client (2)

CNAME DS CL8 The major name of this client

CSUBTASK DS CL8 The minor (subtask) name of this X

 client

 DS D Reserved

CLIENTL EQU *-CLIENTID

BUFFER DS CL(BUFLEN) Socket I/O Buffer

DATALEN DS F Length of buffer data

DWORK DS D Double word work area

SENDINT DS D Time interval for send

RECNO DS PL4 Record Number

AF DS F Address family for socket call

NS DS F New socket number for socket call

SOCTYPE DS F Socket type for socket call

PROTO DS F Protocol for socket call

ERRNO DS F Error number returned from call

RETCODE DS F Return code from call

CINADDR DS F Internet address of client

CPORT DS F Port number of client

MAXSOC DS H Maximum # sockets for INITAPI

SELSOC DS F Maximum # sockets for SELECT

BACKLOG DS F Backlog value for LISTEN

FLAGS DS F FLAGS field for RECV and RECVFROM

RSNDMASK DS F Read send mask for select

WSNDMASK DS F Write send mask for select

ESNDMASK DS F Exception send mask for select

RRETMASK DS F Read return mask for select

WRETMASK DS F Write return mask for select

ERETMASK DS F Exception return mask for select

WTOLIST DS CL(WTOPROTL) List form of WTO Macro

EZASMTI EZASMI TYPE=TASK, X

STORAGE=CSECT Generate task storage for interface

EZASMGW EZASMI TYPE=GLOBAL, Storage definition for GWA X

 Chapter 10. IMS Listener Samples 217

 STORAGE=CSECT

SOCSTGE EQU * End of Program Storage

SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage

 LTORG

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

GWABAR EQU 13

 END

WTO output from sample program
Client Output

Server Output

218 IP IMS Sockets Guide

 Part 4. Appendixes

 Copyright IBM Corp. 1994, 1997 219

220 IP IMS Sockets Guide

 Appendix A. Return Codes

This appendix covers the following return codes and error messages

¹ Error numbers from MVS TCP/IP

¹ Error codes from the Sockets Extended interface.

Table 4 (Page 1 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

1 EPERM All Permission is denied. No owner
exists.

Check that TPC/IP is still active;
check protocol value of socket ()
call.

1 EDOM All Argument too large. Check parameter values of the
function call.

2 ENOENT All The data set or directory was not
found.

Check files used by the function
call.

2 ERANGE All The result is too large. Check parameter values of the
function call.

3 ESRCH All The process was not found. A
table entry was not located.

Check parameter values and struc-
tures pointed to by the function
parameters

4 EINTR All A system call was interrupted. Check that the socket connection
and TCP/IP are still active.

5 EIO All An I/O error occurred. Check status and contents of
source database if this occurred
during a file access.

6 ENXIO All The device or driver was not
found.

Check status of the device
attempting to access.

7 E2BIG All The argument list is too long. Check the number of function
parameters.

8 ENOEXEC All An EXEC format error occurred. Check that the target module on an
exec call is a valid executable
module.

9 EBADF All An incorrect socket descriptor
was specified.

Check socket descriptor value. It
might be currently not in use or
incorrect.

9 EBADF Givesocket The socket has already been
given. The socket domain is not
AF_INET.

Check the validity of function
parameters.

9 EBADF Select One of the specified descriptor
sets is an incorrect socket
descriptor.

Check the validity of function
parameters.

9 EBADF Takesocket The socket has already been
taken.

Check the validity of function
parameters.

10 ECHILD All There are no children. Check if created subtasks still
exist.

11 EAGAIN All There are no more processes. Retry the operation. Data or condi-
tion might not be available at this
time.

12 ENOMEM All There is not enough storage. Check validity of function parame-
ters.

13 EACCES All Permission denied, caller not
authorized.

Check access authority of file.

 Copyright IBM Corp. 1994, 1997 221

Table 4 (Page 2 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

13 EACCES Takesocket The other application (listener)
did not give the socket to your
application. Permission denied,
caller not authorized.

Check access authority of file.

14 EFAULT All An incorrect storage address or
length was specified.

Check validity of function parame-
ters.

15 ENOTBLK All A block device is required. Check device status and character-
istics .

16 EBUSY All Listen has already been called
for this socket. Device or file to
be accessed is busy.

Check if the device or file is in use.

17 EEXIST All The data set exists. Remove or rename existing file.

18 EXDEV All This is a cross-device link. A link
to a file on another file system
was attempted.

Check file permissions.

19 ENODEV All The specified device does not
exist.

Check file name and if it exists.

20 ENOTDIR All The specified directory is not a
directory.

Use a valid file that is a directory.

21 EISDIR All The specified directory is a direc-
tory.

Use a valid file that is not a direc-
tory.

22 EINVAL All types An incorrect argument was spec-
ified.

Check validity of function parame-
ters.

23 ENFILE All Data set table overflow occurred. Reduce the number of open files.

24 EMFILE All The socket descriptor table is
full.

Check the maximum sockets speci-
fied in MAXDESC().

25 ENOTTY All An incorrect device call was
specified.

Check specified IOCTL() values.

26 ETXTBSY All A text data set is busy. Check the current use of the file.

27 EFBIG All The specified data set is too
large.

Check size of accessed dataset.

28 ENOSPC All There is no space left on the
device.

Increase the size of accessed file.

29 ESPIPE All An incorrect seek was attempted. Check the offset parameter for
seek operation.

30 EROFS All The data set system is Read
only.

Access data set for read only oper-
ation.

31 EMLINK All There are too many links. Reduce the number of links to the
accessed file.

32 EPIPE All The connection is broken. For
AF_IUCV socket write/send, peer
has shutdown one or both
directions.

Reconnect with the peer.

33 EDOM All The specified argument is too
large.

Check and correct function param-
eters.

34 ERANGE All The result is too large. Check function parameter values.

35 EWOULDBLOCK Accept The socket is in nonblocking
mode and connections are not
queued. This is not an error con-
dition.

Reissue Accept().

222 IP IMS Sockets Guide

Table 4 (Page 3 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

35 EWOULDBLOCK Read
Recvfrom

The socket is in nonblocking
mode and read data is not avail-
able. This is not an error condi-
tion.

Issue a select on the socket to
determine when data is available to
be read or reissue the
Read()/Recvfrom().

35 EWOULDBLOCK Send Sendto
Write

The socket is in nonblocking
mode and buffers are not avail-
able.

Issue a select on the socket to
determine when data is available to
be written or reissue the Send(),
Sendto(), or Write().

36 EINPROGRESS Connect The socket is marked non-
blocking and the connection
cannot be completed imme-
diately. This is not an error con-
dition.

See the Connect() description for
possible responses.

37 EALREADY Connect The socket is marked non-
blocking and the previous con-
nection has not been completed.

Reissue Connect().

37 EALREADY Maxdesc A socket has already been
created calling Maxdesc() or mul-
tiple calls to Maxdesc().

Issue Getablesize() to query it.

37 EALREADY Setibmopt A connection already exists to a
TCP/IP image. A call to
SETIBMOPT (IBMTCP_IMAGE),
has already been made.

Only call Setibmopt() once.

38 ENOTSOCK All A socket operation was
requested on a nonsocket con-
nection. The value for socket
descriptor was not valid.

Correct the socket descriptor value
and reissue the function call.

39 EDESTADDRREQ All A destination address is
required.

Fill in the destination field in the
correct parameter and reissue the
function call.

40 EMSGSIZE Sendto
Sendmsg
Send Write

The message is too long. The
default is 8192 and the maximum
is 32,767. The
LARGEENVELOPEPOOLSIZE
statement in PROFILE.TCPIP
may restrict this value.

Either correct the length parameter,
or send the message in smaller
pieces.

41 EPROTOTYPE All The specified protocol type is
incorrect for this socket.

Correct the protocol type param-
eter.

42 ENOPROTOOPT Getsockopt
Setsockopt

The socket option specified is
incorrect or the level is not
SOL_SOCKET. Either the level
or the specified optname is not
supported.

Correct the level or optname.

42 ENOPROTOOPT Getibmsockopt
Setibmsockopt

Either the level or the specified
optname is not supported.

Correct the level or optname.

43 EPROTONOSUPPORT Socket The specified protocol is not sup-
ported.

Correct the protocol parameter.

44 ESOCKTNOSUPPORT All The specified socket type is not
supported.

Correct the socket type parameter.

45 EOPNOTSUPP Accept
Givesocket

The selected socket is not a
stream socket.

Use a valid socket.

45 EOPNOTSUPP Listen The socket does not support the
Listen call.

Change the type on the Socket()
call when the socket was created.
Listen() only supports a socket type
of SOCK_STREAM.

 Appendix A. Return Codes 223

Table 4 (Page 4 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

45 EOPNOTSUPP Getibmopt
Setibmopt

The socket does not support this
function call. This command is
not supported for this function.

Correct the command parameter.
See Getibmopt() for valid com-
mands. Correct by ensuring a
Listen() was not issued before the
Connect().

46 EPFNOSUPPORT All The specified protocol family is
not supported or the specified
domain for the client identifier is
not AF_INET=2.

Correct the protocol family.

47 EAFNOSUPPORT Bind
Connect
Socket

The specified address family is
not supported by this protocol
family.

For Socket() , set the domain
parameter to AF_INET. For Bind()
and Connect(), set Sin_Family in
the socket address structure to
AF_INET.

47 EAFNOSUPPORT Getclient
Givesocket

The socket specified by the
socket descriptor parameter was
not created in the AF_INET
domain.

The Socket() call used to create
the socket should be changed to
use AF_INET for the domain
parameter.

48 EADDRINUSE Bind The address is in a timed wait
because a LINGER delay from a
previous close or another
process is using the address.

If you want to reuse the same
address, use Setsockopt() with
SO_REUSEADDR. See
Setsockopt(). Otherwise, use a dif-
ferent address or port in the socket
address structure.

49 EADDRNOTAVAIL Bind The specified address is incor-
rect for this host.

Correct the function address
parameter.

49 EADDRNOTAVAIL Connect The calling host cannot reach the
specified destination.

Correct the function address
parameter.

50 ENETDOWN All The network is down. Retry when the connection path is
up.

51 ENETUNREACH Connect The network cannot be reached. Ensure that the target application is
active.

52 ENETRESET All The network dropped a con-
nection on a reset.

Reestablish the connection
between the applications.

53 ECONNABORTED All The software caused a con-
nection abend.

Reestablish the connection
between the applications.

54 ECONNRESET All The connection to the destination
host is not available.

54 ECONNRESET Send Write The connection to the destination
host is not available.

The socket is closing. Issue Send()
or Write() before closing the
socket.

55 ENOBUFS All No buffer space is available. Check the application for massive
storage allocation call.

55 ENOBUFS Accept Not enough buffer space is avail-
able to create the new socket.

Check TCPIP.PROFILE buffer allo-
cation statements.

55 ENOBUFS Send Sendto
Write

Not enough buffer space is avail-
able to send the new message.

Check TCPIP.PROFILE buffer allo-
cation statements.

55 ENOBUFS Takesocket There is a socket control block
(SCB) or socket interface control
block (SKCB) shortage in the
TCPIP address space.

Check TCPIP.PROFILE buffer allo-
cation statements.

56 EISCONN Connect The socket is already connected. Correct the socket descriptor on
Connect() or do not issue a
Connect() twice for the socket.

224 IP IMS Sockets Guide

Table 4 (Page 5 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

57 ENOTCONN All The socket is not connected. Connect the socket before commu-
nicating.

58 ESHUTDOWN All A Send cannot be processed
after socket shutdown.

Issue read/receive before shutting
down the read side of the socket.

59 ETOOMANYREFS All There are too many references.
A splice cannot be completed.

Call your system administrator.

60 ETIMEDOUT Connect The connection timed out before
it was completed.

Ensure the server application is
available.

61 ECONNREFUSED Connect The requested connection was
refused.

Ensure server application is avail-
able and at specified port.

62 ELOOP All There are too many symbolic
loop levels.

Reduce symbolic links to specified
file.

63 ENAMETOOLONG All The file name is too long. Reduce size of specified file name.

64 EHOSTDOWN All The host is down. Restart specified host.

65 EHOSTUNREACH All There is no route to the host. Set up network path to specified
host and verify that host name is
valid.

66 ENOTEMPTY All The directory is not empty. Clear out specified directory and
reissue call.

67 EPROCLIM All There are too many processes in
the system.

Decrease the number of processes
or increase the process limit.

68 EUSERS All There are too many users on the
system.

Decrease the number of users or
increase the user limit.

69 EDQUOT All The disk quota has been
exceeded.

Call your system administrator.

70 ESTALE All An old NFS** data set handle
was found.

Call your system administrator.

71 EREMOTE All There are too many levels of
remote in the path.

Call your system administrator.

72 ENOSTR All The device is not a stream
device.

Call your system administrator.

73 ETIME All The timer has expired. Increase timer values or reissue
function.

74 ENOSR All There are no more stream
resources.

Call your system administrator.

75 ENOMSG All There is no message of the
desired type.

Call your system administrator.

76 EBADMSG All The system cannot read the
message.

Verify that CS for OS/390 installa-
tion was successful and that
message files were properly
loaded.

77 EIDRM All The identifier has been removed. Call your system administrator.

78 EDEADLK All A deadlock condition has
occurred.

Call your system administrator.

78 EDEADLK Select
Selectex

None of the sockets in the
socket desriptor sets is either
AF_NET or AF_IUCV sockets
and there is not timeout or no
ECB specified. The
select/selectex would never com-
plete.

Correct the socket descriptor sets
so that a AF_NET or AF_IUCV
socket is specified. A timeout or
ECB value can also be added to
avoid the select/selectex from
waiting indefinitely.

 Appendix A. Return Codes 225

Table 4 (Page 6 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

79 ENOLCK All No record locks are available. Call your system administrator.

80 ENONET All The requested machine is not on
the network.

Call your system administrator.

81 ERREMOTE All The object is remote. Call your system administrator.

82 ENOLINK All The link has been severed. Release the sockets and reinitialize
the client-server connection.

83 EADV All An ADVERTISE error has
occurred.

Call your system administrator.

84 ESRMNT All An SRMOUNT error has
occurred.

Call your system administrator.

85 ECOMM All A communication error has
occurred on a Send call.

Call your system administrator.

86 EPROTO All A protocol error has occurred. Call your system administrator.

87 EMULTIHOP All A multihop address link was
attempted.

Call your system administrator.

88 EDOTDOT All A cross-mount point was
detected. This is not an error.

Call your system administrator.

89 EREMCHG All The remote address has
changed.

Call your system administrator.

90 ECONNCLOSED All The connection was closed by a
peer.

Check that the peer is running.

113 EBADF All Socket descriptor is not in
correct range. The maximum
number of socket descriptors is
set by MAXDESC(). The default
range is 0 through 49.

Reissue function with corrected
socket descriptor.

113 EBADF Bind socket The socket descriptor is already
being used.

Correct the socket descriptor.

113 EBADF Givesocket The socket has already been
given. The socket domain is not
AF_INET.

Correct the socket descriptor.

113 EBADF Select One of the specified descriptor
sets is an incorrect socket
descriptor.

Correct the socket descriptor. Set
on Select() or Selectex().

113 EBADF Takesocket The socket has already been
taken.

Correct the socket descriptor.

113 EBADF Accept A Listen() has not been issued
before the Accept().

Issue Listen() before Accept().

121 EINVAL All An incorrect argument was spec-
ified.

Check and correct all function
parameters.

145 E2BIG All The argument list is too long. Eliminate excessive number of
arguments.

1000 EIBMBADCALL All An incorrect socket-call constant
was found in the IUCV header.

For AF_IUCV sockets, contact your
system administrator.

1001 EIBMBADPARM All An IUCV header error, type
OTHER, has occurred.

For AF_IUCV sockets, contact your
system administrator.

1002 EIBMSOCKOUTOFRANGE Socket A socket number assigned by
the client interface code is out of
range.

Check the socket descriptor param-
eter.

226 IP IMS Sockets Guide

Table 4 (Page 7 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

1003 EIBMSOCKINUSE Socket A socket number assigned by
the client interface code is
already in use.

Use a different socket descriptor.

1004 EIBMIUCVERR All The request failed because of an
IUCV error. This error is gener-
ated by the client stub code.

Ensure IUCV/VMCF is functional.

1005 EOFFLOADBOXERROR All The Offload host encountered an
error.

Ensure offload box is functional.

1006 EOFFLOADBOXRESET All The Offload host was restarted. Ensure offload box is functional.

1007 EOFFLOADBOXDOWN All The Offload host went down. Ensure offload box is functional.

1008 EIBMCONFLICT All This request conflicts with a
request already queued on the
same socket.

Cancel the existing call or wait for
its completion before reissuing this
call.

1009 EIBMCANCELLED All The request was cancelled by
the CANCEL call.

Informational, no action needed.

1010 EIBMTHREADFAIL All Returned by the offload function
when a beginthread failure
occurs.

Ensure offload box is functional.

1011 EIBMBADTCPNAME All A TCP/IP name that is not valid
was detected.

Correct the name specified in the
IBM_TCPIMAGE structure.

1012 EIBMBADREQUESTCODE All A request code that is not valid
was detected.

Contact your system administrator.

1013 EIBMBADCONNECTIONSTATEAll A connection token that is not
valid was detected; bad state.

Verify TCP/IP is active.

1014 EIBMUNAUTHORIZEDCALLERAll An unauthorized caller specified
an authorized keyword.

Ensure user ID has authority for
the specified operation.

1015 EIBMBADCONNECTIONMATCHAll A connection token that is not
valid was detected. There is no
such connection.

Verify TCP/IP is active.

1016 EIBMTCPABEND All An abend occurred when TCP/IP
was processing this request.

Verify that TCP/IP has restarted.

1017 EIBMBADMSGID All A message ID that is not valid
was detected.

Verify that TCP/IP is functional.

1018 EIBMNOCCB All A CCB could not be obtained for
this request.

Verify that TCP/IP is functional.

1019 EIBMNORESPONSEFOUND All No response was found for the
request issued previously.

Reissue the function call.

1020 EIBMINVALIDRESPONSE All The expected response was not
received.

Reissue the function call.

1021 EIBMNOACB All An ACB could not be obtained
for this request.

Ensure that TCP/IP is functional.

1022 EIBMINVALIDKEYWORD All A keyword combination that is
not valid was used.

Check validity of function parame-
ters.

1023 EIBMTERMERROR All A terminating error was encount-
ered.

Call your system programmer.

1024 EIBMNOADDRSPACENAME All An API common module could
not find the user address space
name.

Call your system programmer.

1025 EIBMSRBMODE All A call was issued in SRB mode. Reissue in authorized state.

1026 EIBMINVDELETE All Delete requestor did not create
the connection.

Delete the request from the
process that created it.

 Appendix A. Return Codes 227

Table 4 (Page 8 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

1027 EIBMINVSOCKET All A connection token that is not
valid was detected. No such
socket exists.

Call your system programmer.

1028 EIBMINVTCPCONNECTION All Connection terminated by
TCP/IP. The token was invali-
dated by TCP/IP.

Reestablish the connection to
TCP/IP.

1029 EIBMBADATTACH All Task failed to attach. Check ATTACH failure reasons,
correct, and reissue the call.

1030 EIBMINVGETSTORAGE All Failed to obtain storage. Correct any parameters on the call
that would cause allocation of
buffers to fail.

1031 EIBMINVFREESTORAGE All Failed to free storage. Correct any parameters on the call
that would cause allocation of
buffers to fail.

1032 EIBMCALLINPROGRESS All Another call was already in
progress.

Reissue after previous call has
completed.

1033 EIBMCELLPOOLDELETED All Cell pool is marked for deletion. Call your system programmer.

1034 EIBMINVSOCKETCALLNUM All The request exceeded the
maximum number of requests
allowed.

Check use of EZASMI MF=L to
build unique parameter storage
areas per outstanding request.

1035 EIBMERRORUNKNOWN All An unknown reason code was
received.

Call your system programmer.

1036 EIBMNOACTIVETCP All TCP/IP is not installed or not
active.

Correct TCP/IP name used.

1036 EIBMNOACTIVETCP Select EIBMNOACTIVETCP Ensure TCP/IP is active.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was found. Ensure TCP/IP is active.

1037 EIBMINVTSRBUSERDATA All The request control block con-
tained data that is not valid.

Call your system programmer.

1038 EIBMINVUSERDATA All The request control block con-
tained user data that is not valid.

Check your function parameters
and call your system programmer.

1039 EIBMBADTCPIP All The client program was can-
celled because TCP/IP is coming
down.

Wait until TCP/IP is active again
and restart the program.

1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an ECB that
was already posted.

Check whether the user's ECB was
already posted.

1041 EIBMBADPOSTCODE All An application was given a bad
post code. Received by an out-
standing (blocked) socket when
TCP/IP is stopped.

Ensure that TCP/IP is active.

1042 EIBMDUPJOBNAME INITAPI An application attempted to
create a connection to TCP/IP
with a duplicate jobname and/or
subtask name.

Correct jobname or subtask name.

1043 EIBMCLIENVRCVY All TCP/IP was reinitialized while an
application was communicating
with it. Recovery processing
deleted the previous TCP/IP
environmental information for the
application. Subsequent INITAPI
socket calls will succeed.

Reinitialize connection to TCP/IP
and restart program.

1044 EIBMINVALIDTCB All except
INITAPI

Socket call was issued from a
TCB other than the TCB that
issued the INITAPI call.

Issue the function call from the
correct task

228 IP IMS Sockets Guide

Table 4 (Page 9 of 9). System Error Return Codes

Error
Number

Message
Name

Socket
Type

Error
Description Programmer's Response

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred in the
RXSOCKET parameter list.

Correct the parameter list passed
to the REXX socket call.

2002 ECONSOLEINTERRUPT REXX A console interrupt occurred. Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is incorrect. Correct the subtask ID on the INI-
TIALIZE call.

2004 ESUBTASKALREADYACTIVEREXX The subtask is already active. Only issue the INITIALIZE call
once in your program.

2005 ESUBTASKALNOTACTIVE REXX The subtask is not active. Issue the INITIALIZE call before
any other socket call.

2006 ESOCKNETNOTALLOCATEDREXX The specified socket could not
be allocated.

Increase the user storage allo-
cation for this job.

2007 EMAXSOCKETSREACHED REXX The maximum number of sockets
has been reached.

Increase the number of allocate
sockets, or decreased the number
of sockets used by your program.

2009 ESOCKETNOTDEFINED REXX The socket is not defined. Issue the SOCKET call before the
call that fails.

2011 EDOMAINSERVERFAILURE REXX A Domain Name Server failure
occurred.

Call your MVS system pro-
grammer.

2012 EINVALIDNAME REXX An incorrect name was received
from the TCP/IP server.

Call your MVS system pro-
grammer.

2013 EINVALIDCLIENTID REXX An incorrect clientid was
received from the TCP/IP server.

Call your MVS system pro-
grammer.

2014 ENIVALIDFILENAME REXX An error occurred during
NUCEXT processing.

Specify the correct translation table
file name, or verify that the trans-
lation table is valid.

2016 EHOSTNOTFOUND The host is
not found.

REXX Call your MVS system pro-
grammer.

2017 EIPADDRNOTFOUND Address not
found.

REXX Call your MVS system pro-
grammer.

Sockets Extended Return Codes
This section covers the error condition codes that are returned by the sockets
extended interface. These errors are due to a problem detected by the sockets
extended API.

Table 5 (Page 1 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10100 An ESTAE macro did not complete
normally.

End the call. Call your MVS system programmer.

10101 A STORAGE OBTAIN failed. Insuf-
ficient TCP/IP storage available.

End the call. Increase MVS storage in the TCP/IP address
space.

10102 Interface could not find the first
subsystem.

End the call. Call your MVS system programmer.

10103 VMCF or IUCV is not available.
The VMCF CVT address is 0.

End the call. Check VMCF or IUCV specification and IPL MVS.

10104 The requested function is not valid. End the call. Correct the call and retry.

 Appendix A. Return Codes 229

Table 5 (Page 2 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10105 The number of parameters is incor-
rect or the return code address is
negative.

End the call. Correct the parameter list.

10106 The high-order bit in the parameter
list is not set for the last parameter.

End the call. Correct the parameter list.

10107 An incorrect subtask ID was
obtained from a GETCLIENTID
call.

End the call. Correct the method used to get the subtask ID.

10108 The first call from TCP/IP was not
INITAPI or TAKESOCKET.

End the call. Change the first TCP/IP call to INITAPI or
TAKESOCKET.

10109 A duplicate subtask ID occurred in
the path ownership table.

End the call. Correct the subtask ID on INITAPI or
TAKESOCKET.

10110 LOAD of EZASOH03 failed. End the call. Call the IBM Software Support Center.

10111 The IUCVMINI SET macro
detected errors in IUCVMULT or
EZACICMT.

End the call. Call the IBM Software Support Center.

10112 The IUCVMCOM CONNECT
macro detected errors.

End the call. Start TCP/IP or, if TCP/IP is running, ensure that
the startup name matches the TCP/IP job name.
You might have used a duplicate job name.

10113 The IUCVMCOM SEND macro for
the initial message detected errors.

End the call. Call the IBM Software Support Center.

10114 During an IUCV CONNECT, IUCV
sent an unsolicited message to an
active task.

Disable the subtask
and return an error to
the user.

Retry the task.

10115 The option length for a
GETSOCKOPT call is incorrect.

Return an error to the
user.

Correct the GETSOCKOPT call.

10116 After a CONNECT, IUCV sent an
unsolicited message to an active
task.

Disable the interface. Retry the task.

10117 The return code address in your
parameter list is zero.

No action. Correct the return code address.

10118 IUCV sent an unexpected interrupt. Wait for TRUE to
post the subtask.

Retry the task.

10119 TCP/IP severed the IUCV con-
nection, IPUSER=IUCVCHECKRC
is set.

End the call. Call your system programmer.

10120 TCP/IP severed the IUCV con-
nection,
IPUSER=SHUTTINGDOWN is set.

End the call. Change the program to handle the SHUTDOWN
condition.

10121 TCP/IP severed the IUCV con-
nection, IPUSER=BAD PATHID is
set.

End the call. Check the path ID.

10122 TCP/IP severed the IUCV con-
nection, IPUSER=NULL SAVED
NAME is set.

End the call. Call the IBM Software Support Center.

10123 TCP/IP severed the IUCV con-
nection, IPUSER=BAD INIT MSG
LEN is set.

End the call. If your program issues an INIT command (0),
check the parameters.

10124 TCP/IP severed the IUCV con-
nection,
IPUSER=REQUIREDCONSTANT
is set.

End the call. Correct parameter 3 in your INIT call.

230 IP IMS Sockets Guide

Table 5 (Page 3 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10125 TCP/IP severed the IUCV con-
nection, IPUSER=BAD API TYPE
is set.

End the call. Correct parameter 5 in your INIT call.

10126 TCP/IP severed the IUCV con-
nection, IPUSER=RESTRICTED is
set.

End the call. Call your system programmer.

10127 TCP/IP severed the IUCV con-
nection, IPUSER=NO MORE
CCBS is set.

End the call. Call your system programmer.

10128 TCP/IP severed the IUCV con-
nection, IPUSER=NO CCB is set.

End the call. Call your system programmer.

10129 TCP/IP severed the IUCV con-
nection, IPUSER=KILL nnn is set.

End the call. Call your system programmer.

10130 TCP/IP severed the IUCV con-
nection, IPUSER=UNKNOWN
REASON CODE is set.

End the call. Call your system programmer.

10131 During a quiesce, IUCV sent an
unsolicited message to an active
task.

End the call. Call your system programmer.

10132 During a quiesce, IUCV sent an
unsolicited message to an inactive
task.

Wait for the TRUE to
post the subtask.

Call your system programmer.

10133 IUCV sent an unsolicited priority
completion message interrupt to an
active task.

End the call. Call your system programmer.

10134 IUCV sent an unsolicited priority
completion message interrupt to an
inactive task.

Wait for TRUE to
post the subtask.

Call your system programmer.

10135 An error occurred in an IUCV
SEVER function.

End the call. Call your system programmer.

10136 IUCV sent an unsolicited nonpri-
ority completion message interrupt
to an inactive task.

Wait for TRUE to
post the subtask.

Call your system programmer.

10137 IUCV sent an unsolicited priority
pending message interrupt to an
active task.

End the call. Call your system programmer.

10138 IUCV sent an unsolicited priority
pending message interrupt to an
inactive task.

Wait for TRUE to
post the subtask.

Call your system programmer.

10139 IUCV sent an unsolicited external
interrupt to the subtask.

Write message
EZY1281E to the
system console.
Return an error code
to the caller.

Call your system programmer.

10140 IUCV sent a solicited nonpriority
pending message interrupt to the
subtask.

Return an error code
to the caller.

Call your system programmer.

10141 IUCV sent an unsolicited, nonpri-
ority pending message interrupt to
the subtask.

Wait for TRUE to
post the subtask.

Call your system programmer.

10142 Errors were found in the parameter
list for an ACCEPT call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the ACCEPT call. You might have incor-
rect sequencing of socket calls.

 Appendix A. Return Codes 231

Table 5 (Page 4 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10143 Errors were found in the parameter
list for a BIND call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the BIND call. You might have incorrect
sequencing of socket calls.

10144 Errors were found in the parameter
list for a CLOSE call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the CLOSE call. You might have incorrect
sequencing of socket calls.

10145 Errors were found in the parameter
list for a CONNECT call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the CONNECT call. You might have incor-
rect sequencing of socket calls.

10146 Errors were found in the parameter
list for an FCNTL call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the FCNTL call. You might have incorrect
sequencing of socket calls.

10147 Errors were found in the parameter
list for a GETCLIENTID call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GETCLIENTID call. You might have
incorrect sequencing of socket calls.

10148 Errors were found in the parameter
list for a GETHOSTID call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GETHOSTID call. You might have
incorrect sequencing of socket calls.

10149 Errors were found in the parameter
list for a GETHOSTNAME call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GETHOSTNAME call. You might have
incorrect sequencing of socket calls.

10150 Errors were found in the parameter
list for a GETPEERNAME call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GETPEERNAME call. You might have
incorrect sequencing of socket calls.

10151 Errors were found in the parameter
list for a GETSOCKNAME call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GETSOCKNAME call. You might have
incorrect sequencing of socket calls.

10152 Errors were found in the parameter
list for a GETSOCKOPT call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GETSOCKOPT call. You might have
incorrect sequencing of socket calls.

10153 Errors were found in the parameter
list for a GIVESOCKET call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the GIVESOCKET call. You might have
incorrect sequencing of socket calls.

10154 Errors were found in the parameter
list for an IOCTL call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have incorrect
sequencing of socket calls.

10155 The length parameter for an IOCTL
call is less than or equal to zero.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have incorrect
sequencing of socket calls.

10156 The length parameter for an IOCTL
call is 3200 (32 x 100).

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have incorrect
sequencing of socket calls.

232 IP IMS Sockets Guide

Table 5 (Page 5 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10157 The parameter list for an IOCTL
call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have incorrect
sequencing of socket calls.

10158 The parameter list for a LISTEN
call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the LISTEN call. You might have incorrect
sequencing of socket calls.

10159 A zero or negative data length was
specified for a READ or READV
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length in the READ call.

10160 A READ call specified a data
length greater than 32KB.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length in the READ call.

10161 The REQARG parameter in the
IOCTL parameter list is zero.

End the call. Correct the program.

10162 The parameter list for a READ call
is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the READ call. You might have incorrect
sequencing of socket calls.

10163 A 0 or negative data length was
found for a RECV, RECVFROM, or
RECVMSG call.

Disable the subtask
for interrupts. Sever
the IUCV path.
Return an error code
to the caller.

Correct the data length.

10164 The data length for a RECV,
RECVFROM, or RECVMSG call
exceeded the maximum.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length.

10165 Incorrect data was specified for an
IUCV SEVER.

End the call. Call the IBM Software Support Center.

10166 The parameter list for a RECV,
RECVFROM, or RECVMSG call is
incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the READ call. You might have incorrect
sequencing of socket calls.

10167 The descriptor set size for a
SELECT or SELECTEX call is less
than or equal to zero.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SELECT or SELECTEX call. You
might have incorrect sequencing of socket calls.

10168 The descriptor set size in bytes for
a SELECT or SELECTEX call is
greater than 252. A number greater
than the maximum number of
allowed sockets (2000 is
maximum) has been specified.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the descriptor set size.

10169 The parameter list for a SELECT
or SELECTEX call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SELECT or SELECTEX call. You
might have incorrect sequencing of socket calls.

10170 A zero or negative data length was
found for a SEND or SENDMSG
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SEND call.

 Appendix A. Return Codes 233

Table 5 (Page 6 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10171 The data length for a SEND call
exceeded the maximum.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SEND call.

10172 An error occurred while processing
an IUCV SEVER command.

End the program. Call your system programmer.

10173 The parameter list for a SEND call
is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SEND call. You might have incorrect
sequencing of socket calls.

10174 A zero or negative data length was
found for a SENDTO call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SENDTO call.

10175 The data length for a SENDTO call
exceeded the maximum.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SENDTO call.

10176 A nonzero return code was
received from an IUCV SEVER
command.

Return an error to the
user.

Call your system programmer.

10177 The parameter list for a SENDTO
call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SENDTO call. You might have incor-
rect sequencing of socket calls.

10178 The SETSOCKOPT option length
is less than the minimum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10179 The SETSOCKOPT option length
is greater than the maximum
length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10180 The parameter list for a
SETSOCKOPT call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SETSOCKOPT call. You might have
incorrect sequencing of socket calls.

10181 The parameter list for a SHUT-
DOWN call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SHUTDOWN call. You might have
incorrect sequencing of socket calls.

10182 The parameter list for a SOCKET
call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SOCKET call. You might have incor-
rect sequencing of socket calls.

10183 The parameter list for a
TAKESOCKET call is incorrect.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the TAKESOCKET call. You might have
incorrect sequencing of socket calls.

10184 A data length of zero was specified
for a WRITE call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

234 IP IMS Sockets Guide

Table 5 (Page 7 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10185 The data length for a WRITE call
exceeded the maximum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10186 A negative data length was speci-
fied for a WRITE or WRITEV call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10187 The third parameter for IUCV
SEVER ALL is incorrect.

End the call. Call the IBM Software Support Center.

10188 Errors were found in the parameter
list for a WRITE call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the WRITE call. You might have incorrect
sequencing of socket calls.

10189 Errors were found in the parameter
list for a LASTERRNO call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the LASTERRNO call. You might have
incorrect sequencing of socket calls.

10190 The GETHOSTNAME option length
is less than 24 or greater than the
maximum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length parameter.

10191 IUCV returned an error code. End the call. Notify operations.

10192 The function is available. No action. No action.

10193 The GETSOCKOPT option length
is less than the minimum or greater
than the maximum length.

End the call. Correct the length parameter.

10194 The IUCV SEVER ALL user data is
not binary zeros.

Bypass the call. Call the IBM Software Support Center.

10195 An IUCV SEVER path ID error was
detected.

Bypass the call. Call the IBM Software Support Center.

10196 An error occurred in the IUCV
CLEAR function.

Bypass the call. Call the IBM Software Support Center.

10197 The application issued an INITAPI
call after the connection was
already established.

Bypass the call. Correct the logic that produces the INITAPI call
that is not valid.

10198 The maximum number of sockets
specified for an INITAPI exceeds
2000.

Return to the user. Correct the INITAPI call.

10199 EZACICMT cannot be loaded. Bypass the call. Correct the SYSLIB concatenation and retry.

10200 The first call issued was not a valid
first call.

End the call. For a list of valid first calls, refer to the section on
special considerations in the chapter on genral
programming .

10201 The seventh parameter, ERRNO
address, for an IOCTL call is incor-
rect.

End the call. Correct the parameter list.

10202 The RETARG parameter in the
IOCTL call is zero.

End the call. Correct the parameter list. You might have incor-
rect sequencing of socket calls.

10203 The requested socket number is a
negative value.

End the call. Correct the requested socket number.

10204 The requested socket number
exceeds 4095.

End the call. Correct the requested socket number.

 Appendix A. Return Codes 235

Table 5 (Page 8 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10205 The requested socket number is a
duplicate.

End the call. Correct the requested socket number.

10206 The socket descriptor table is full. End the call. Issue an INITAPI call to request more descriptors.

10207 A SYNC call was issued before an
ECB was specified.

End the call. Issue an ECB before the SYNC call.

10208 The NAMELEN parameter for a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAMELEN parameter. You might have
incorrect sequencing of socket calls.

10209 The NAME parameter on a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAME parameter. You might have
incorrect sequencing of socket calls.

10210 The HOSTENT parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call was not
specified.

End the call. Correct the HOSTENT parameter. You might have
incorrect sequencing of socket calls.

10211 The HOSTADDR parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call is incor-
rect.

End the call. Correct the HOSTADDR parameter. You might
have incorrect sequencing of socket calls.

10212 The resolver program failed to load
correctly for a GETHOSTBYNAME
or GETHOSTBYADDR call.

End the call. Check the JOBLIB, STEPLIB, and linklib datasets
and rerun the program.

10213 Not enough storage is available to
allocate the HOSTENT structure.

End the call. Increase the user storage allocation for this job.

10214 The HOSTENT structure was not
returned by the resolver program.

End the call. Ensure that the domain name server is available.
This can be a nonerror condition indicating that
the name or address specified in a
GETHOSTBYADDR or GETHOSTBYNAME call
could not be matched.

10215 The APITYPE parameter on an
INITAPI call instruction was not 2
or 3.

End the call. Correct the APITYPE parameter.

10216 TCP/IP has terminated. End the call. Perform recovery processing for a TCP/IP failure.

10217 The connection to TCP/IP has
been severed.

End the call. Perform recovery processing for the connection.
This will include re-establishing communication
with TCP/IP.

10218 The application programming inter-
face (API) cannot locate the speci-
fied TCP/IP.

End the call. Ensure that an API that supports the performance
improvements related to CPU conservation is
installed on the system and verify that a valid
TCP/IP name was specified on the INITAPI call.
This error call might also mean that EZASOKIN
could not be loaded.

10219 The NS parameter is greater than
the maximum socket for this con-
nection.

End the call. Correct the NS parameter on the ACCEPT,
SOCKET or TAKESOCKET call.

10220 Trying to close socket that has not
been allocated.

End the call. Correct the S parameter on the CLOSE call.

10221 The AF parameter of a SOCKET
call is not AF_INET.

End the call. Set the AF parameter equal to AF_INET.

10222 The SOCTYPE parameter of a
SOCKET call must be stream,
datagram, or raw (1, 2, or 3).

End the call. Correct the SOCTYPE parameter.

10223 No ASYNC parameter specified for
INITAPI with APITYPE=3 call.

End the call. Add the ASYNC parameter to the INITAPI call.

236 IP IMS Sockets Guide

Table 5 (Page 9 of 9). Sockets Extended Return Codes

Error
Code

Problem
Description System Action

Programmer’s
Response

10224 The IOVCNT parameter is less
than or equal to zero, for a
READV, RECVMSG, SENDMSG,
or WRITEV call.

End the call. Correct the IOVCNT parameter.

10225 The IOVCNT parameter is greater
than 120, for a READV,
RECVMSG, SENDMSG, or
WRITEV call.

End the call. Correct the IOVCNT parameter.

10226 Invalid COMMAND parameter
specified for a GETIBMOPT call.

End the call. Correct the COMMAND parameter of the
GETIBMOPT call.

10228 The CANCEL call was issued on a
non-asynchronous connection.

End the call. CANCEL is valid only for connections established
with the ASYNC parameter on the INITAPI call.

10228 For CICS, the maximum number of
sockets specified for an INITAPI
exceeds 255.

End the call. Correct the INITAPI call.

10229 A call was issued on an
APITYPE=3 connection without an
ECB or REQAREA parameter.

End the call. Add an ECB or REQAREA parameter to the call.

10330 A SELECT call was issued without
a MAXSOC value and a TIMEOUT
parameter.

End the call. Correct the call by adding a TIMEOUT parameter.

10331 A call that is not valid was issued
while in SRB mode.

End the call. Get out of SRB mode and reissue the call.

10332 A SELECT call is invoked with a
MAXSOC value greater than that
which was returned in the INITAPI
function (MAXSNO field).

End the call. Correct the MAXSOC parameter and reissue the
call.

10333 An error was detected in the asyn-
chronous exit routine.

End the call. Perform necessary asynchronous exit recovery
where applicable.

10999 An abend has occurred in the
subtask.

Write message
EZY1282E to the
system console. End
the subtask and post
the TRUE ECB.

If the call is correct, call your system programmer.

20000 An unknown function code was
found in the call.

End the call. Correct the SOC-FUNCTION parameter.

20001 The call passed an incorrect
number of parameters

End the call Correct the parameter list.

20002 The CICS Sockets Interface is not
in operation.

End the call Start the CICS Sockets Interface before executing
this call.

 Appendix A. Return Codes 237

238 IP IMS Sockets Guide

Appendix B. How to Read a Syntax Diagram

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and Punctuation
The following symbols are used in syntax diagrams:

Symbol Description

55 Marks the beginning of the command syntax.

5 Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

5% Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

 Parameters
The following types of parameters are used in syntax diagrams.

Parameter Description
Required Required parameters are displayed on the main path.
Optional Optional parameters are displayed below the main path.
Default Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. Keywords are displayed in
uppercase letters and can be entered in uppercase or lowercase. For example, a
command name is a keyword.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

 Syntax Examples
In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

55─ ─USER──user_id─ ──┬ ┬────────── ───5%
 └ ┘─password─

Longer than one line: If a diagram is longer than one line, the first line ends with
a single arrowhead and the second line begins with a single arrowhead.

55──┤ First Line ├───5%

55──┤ Second Line ├──5%

 Copyright IBM Corp. 1994, 1997 239

Required operands: Required operands and values appear on the main path line.

55─ ──REQUIRED_OPERAND ──5%

You must code required operands and values.

Choose one required item from a stack: If there is more than one mutually exclu-
sive required operand or value to choose from, they are stacked vertically in alpha-
numeric order.

55─ ──┬ ┬─REQUIRED_OPERAND_OR_VALUE_1─ ───5%
 └ ┘─REQUIRED_OPERAND_OR_VALUE_2─

Optional values: Optional operands and values appear below the main path line.

55─ ──┬ ┬───────── ───5%
 └ ┘──OPERAND

You can choose not to code optional operands and values.

Choose one optional operand from a stack: If there is more than one mutually
exclusive optional operand or value to choose from, they are stacked vertically in
alphanumeric order below the main path line.

55─ ──┬ ┬──────────────────── ──5%
 ├ ┤─OPERAND_OR_VALUE_1─
 └ ┘─OPERAND_OR_VALUE_2─

Repeating an operand: An arrow returning to the left above an operand or value
on the main path line means that the operand or value can be repeated. The
commad means that each operand or value must be separated from the next by a
comma.

 ┌ ┐─,────────────────
55─ ───6 ┴REPEATABLE_OPERAND ──5%

Selecting more than one operand: An arrow returning to the left above a group of
operands or values means more than one can be selected, or a single one can be
repeated.

55─ ──┬ ┬─────────────────────────────────────── ───5%
 │ │┌ ┐─,─────────────────────────────────
 └ ┘───6 ┴──┬ ┬─REPEATABLE_OPERAND_OR_VALUE_1─
 ├ ┤─REPEATABLE_OPERAND_OR_VALUE_2─
 ├ ┤─REPEATABLE_OPER_OR_VALUE_1────
 └ ┘─REPEATABLE_OPER_OR_VALUE_2────

If an operand or value can be abbreviated, the abbreviation is described in the text
associated with the syntax diagram.

Nonalphanumeric characters: If a diagram shows a character that is not alphanu-
meric (such as parentheses, periods, commas, and equal signs), you must code
the character as part of the syntax. In this example, you must code
OPERAND=(001,0.001).

55─ ──OPERAND=(001,0.001) ───5%

Blank spaces in syntax diagrams: If a diagram shows a blank space, you must
code the blank space as part of the syntax. In this example, you must code
OPERAND=(001 FIXED).

240 IP IMS Sockets Guide

55─ ──OPERAND=(001 FIXED) ───5%

Default operands: Default operands and values appear above the main path line.
TCP/IP uses the default if you omit the operand entirely.

 ┌ ┐─DEFAULT─
55─ ──┼ ┼───────── ───5%
 └ ┘─OPERAND─

Variables: A word in all lowercase italics is a variable. Where you see a variable in
the syntax, you must replace it with one of its allowable names or values, as
defined in the text.

55─ ──variable ──5%

Syntax fragments: Some diagrams contain syntax fragments, which serve to break
up diagrams that are too long, too complex, or too repetitious. Syntax fragment
names are in mixed case and are shown in the diagram and in the heading of the
fragment. The fragment is placed below the main diagram.

55─ ───┤ Reference to Syntax Fragment ├─ ──5%

Syntax Fragment:
├─ ──1ST_OPERAND,2ND_OPERAND,3RD_OPERAND ───┤

 Appendix B. How to Read a Syntax Diagram 241

242 IP IMS Sockets Guide

 Appendix C. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM's valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other pro-
ducts, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the warran-
ties of merchantability and fitness for a particular purpose.

IBM is required to include the following statements in order to distribute portions of
this document and the software described herein to which contributions have been
made by The University of California.

Portions herein  Copyright 1979, 1980, 1983, 1986, Regents of the University of
California. Reproduced by permission. Portions herein were developed at the Elec-
trical Engineering and Computer Sciences Department at the Berkeley campus of
the University of California under the auspices of the Regents of the University of
California.

Portions of this publication relating to RPC are Copyright  Sun Microsystems, Inc.,
1988, 1989.

Some portions of this publication relating to X Window System** are Copyright 
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights
Reserved.

Some portions of this publication relating to X Window System are Copyright 
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment Corpo-
ration, and Hewlett-Packard Corporation portions of this software and its documen-
tation for any purpose without fee is hereby granted, provided that the above
copyright notice appears in all copies and that both that copyright notice and this

 Copyright IBM Corp. 1994, 1997 243

permission notice appear in supporting documentation, and that the names of
M.I.T., Digital, and Hewlett-Packard not be used in advertising or publicity per-
taining to distribution of the software without specific, written prior permission.
M.I.T., Digital, and Hewlett-Packard make no representation about the suitability of
this software for any purpose. It is provided “as is” without express or implied war-
ranty.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trade-
marks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

 ACF/VTAM
Advanced Peer-to-Peer Networking

 AD/Cycle
 AIX
 AIX/ESA
 AnyNet
 APPN
 AS/400
 BookManager
 C/370
 CICS
 DB2
 DFSMS
 DFSMS/MVS
 ESCON
 ES/9000
 ES/9370
 EtherStreamer
 Extended Services
 FFST
 GDDM

Hardware Configuration Definition
 IBM

 LANStreamer
 Library Reader
 MVS/ESA
 MVS/SP
 MVS/XA
 NetView
 Nways
 OpenEdition
 OS/2
 OS/390
 PS/2
 RACF
 RETAIN
 RISC System/6000
 RS/6000
 SAA
 System/360
 System/370
 System/390
 VTAM
 3090

244 IP IMS Sockets Guide

 Glossary

The IBM Networking Software Glossary is now available
in HTML format as well as PDF. You can access it
directly at the following URL:

http://www.networking.ibm.com/nsg/nsggls.htm

This glossary includes terms and definitions from:

¹ The American National Standards Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the Amer-
ican National Standards Institute, 11 West 42nd
Street, New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

¹ The ANSI/EIA Standard—440-A, Fiber Optic Termi-
nology Copies may be purchased from the Elec-
tronic Industries Association, 2001 Pennsylvania
Avenue, N.W., Washington, DC 20006. Definitions
are identified by the symbol (E) after the definition.

¹ The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of

the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft inter-
national standards, committee drafts, and working
papers being developed by ISO/IEC JTC1/SC1 are
identified by the symbol (T) after the definition, indi-
cating that final agreement has not yet been
reached among the participating National Bodies of
SC1.

¹ The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

¹ Internet Request for Comments: 1208, Glossary of
Networking Terms

¹ Internet Request for Comments: 1392, Internet
Users' Glossary

¹ The Object-Oriented Interface Design: IBM
Common User Access Guidelines, Carmel, Indiana:
Que, 1992.

 Copyright IBM Corp. 1994, 1997 245

246 IP IMS Sockets Guide

 Bibliography

 eNetwork Communications
Server for OS/390 V2R5
Publications

Following are descriptions of the books in the eNetwork
Communications Server for OS/390 V2R5 library. The
books are arranged in the following categories:

 ¹ Softcopy Information
 ¹ Marketing Information
 ¹ Planning
¹ Installation, Resource Definition, and Tuning

 ¹ Operation
 ¹ Customization
¹ Writing Application Programs

 ¹ Diagnosis
¹ Messages and Codes
¹ APPC Application Suite.
¹ Multiprotocol Transport Networking (MPTN) Archi-

tecture publications

The complete set of unlicensed books in this section
can be ordered using a single order number,
SBOF-7011.

 Softcopy Information

IBM Networking Softcopy Collection Kit
CD-ROM(SK2T-6012).

The softcopy library contains softcopy versions of the
licensed and unlicensed books for eNetwork Communi-
cations Server for OS/390 V2R5.

All of the unlicensed and licensed books described in
this section are available in softcopy on this CD-ROM.
These softcopy files can be read using any of the IBM
BookManager READ programs. They can also be read
with the IBM Library Reader program shipped on this
CD.

The CD also contains softcopy of the unlicensed books
of many other products.

 Marketing Information

A Networking Overview and the following IBM Net-
working Previews are available:

 ¹ VTAM
 ¹ TCP/IP

Ask your IBM marketing representative for more infor-
mation.

 Planning

OS/390 eNetwork Communications Server: SNA Plan-
ning and Migration Guide (SC31-8622). This guide
helps you upgrade to eNetwork Communications Server
for OS/390 V2R5. It includes:

 ¹ Installation procedures
¹ Planning to upgrade

– Upward and downward compatibility
– Software and hardware requirements

 – Storage requirements
– Impacts of new functions and enhancements

performed without changes to user interfaces
– Changes to installation process

¹ Upgrading user interfaces
– Changes to start options
– Changes to buffer pools
– Changes to definition statements
– Changes to IBM-supplied default user-definable

tables and modules
– Changes to user-definable table macroin-

structions
– Changes to commands
– Changes to messages
– Changes to SNA application programming inter-

face
– Changes to installation-wide exit routines
– Changes to control blocks

¹ Implementing optional functions and enhancements
introduced in eNetwork Communications Server for
OS/390 V2R5.

– Overview of each new function and enhance-
ment introduced since VTAM V4R4

– Pointers to other books in the library where
implementation details can be found.

OS/390 eNetwork Communications Server: IP Planning
and Migration Guide (SC31-8512). This book is
intended to help you plan for TCP/IP whether you are
migrating from a previous version or installing TCP/IP
for the first time. This book also identifies the sug-
gested and required modifications needed to enable you
to use the enhanced functions provided with TCP/IP.

Installation, Resource Definition,
Configuration, and Tuning

Program Directory. These documents are shipped with
the product tape and explains the steps for installing
VTAM and TCP/IP.

OS/390 eNetwork Communications Server: IP Config-
uration (SC31-8513). This book is for people who want
to configure, customize, administer, and maintain

 Copyright IBM Corp. 1994, 1997 247

TCP/IP. Familiarity with MVS operating system, TCP/IP
protocols, and IBM Time Sharing Option (TSO) is
recommended.

OS/390 eNetwork Communications Server: SNA
Network Implementation (SC31-8563). This book pre-
sents the major concepts involved in implementing a
SNA network, and includes:

¹ Buffer pools, slowdown, pacing, storage consider-
ations

 ¹ Implementation considerations
¹ Sample major node definitions

 ¹ Migration considerations
¹ Tables and filters
¹ TSO, VCNS, and other programs that run with

VTAM
 ¹ Tuning procedures
¹ VTAM start options.

Use this book in conjunction with the OS/390 eNetwork
Communications Server: SNA Resource Definition Ref-
erence

OS/390 eNetwork Communications Server: SNA
Resource Definition Reference (SC31-8565). This book
describes each VTAM definition statement, start option,
and macroinstruction for user tables. It also describes
NCP definition statements that affect VTAM. The infor-
mation includes:

¹ IBM-supplied default tables (logon mode and USS)
¹ Major node definitions
¹ User-defined tables and filters
¹ VTAM start options.

If you are unfamiliar with the major concepts involved in
implementing a SNA network, use this book in conjunc-
tion with the OS/390 eNetwork Communications Server:
SNA Network Implementation.

OS/390 eNetwork Communications Server: SNA
Resource Definition Samples (SC31-8566). This book
contains sample definitions to help you implement
VTAM functions in your networks, and includes sample
major node definitions. Use this book in conjunction with
the OS/390 eNetwork Communications Server: SNA
Network Implementation and OS/390 eNetwork Commu-
nications Server: SNA Resource Definition Reference

OS/390 eNetwork Communications Server: AnyNet SNA
over TCP/IP (SC31-8578). This guide provides informa-
tion to help you install, configure, use, and diagnose
SNA over TCP/IP.

OS/390 eNetwork Communications Server: AnyNet
Sockets over SNA (SC31-8577). This guide provides
information to help you install, configure, use, and diag-
nose Sockets over SNA. It also provides information to
help you prepare application programs to use sockets
over SNA.

 Operation

OS/390 eNetwork Communications Server: IP User's
Guide (GC31-8514). This book is for people who want
to use TCP/IP for data communication activities such as
FTP and Telnet. Familiarity with MVS operating system
and IBM Time Sharing Option (TSO) is recommended.

OS/390 eNetwork Communications Server: SNA Opera-
tion (SC31-8567). This book serves as a reference for
programmers and operators requiring detailed informa-
tion about specific operator commands. The information
includes:

¹ VTAM commands and start options
¹ Logon manager commands
¹ DISPLAY output examples (messages received)

 ¹ VSCS commands.

OS/390 eNetwork Communications Server: Operations
Quick Reference (SX75-0121). This book contains
essential information about VTAM operator commands.

High Speed Access Services User's Guide
(GC31-8676).

 Customization

OS/390 eNetwork Communications Server: SNA
Customization (LY43-0110). This book enables you to
customize VTAM, and includes:

¹ Communication network management (CNM)
routing table

¹ Logon-interpret routine requirements

¹ Logon manager installation-wide exit routine for the
CLU search exit

¹ TSO/VTAM installation-wide exit routines

¹ VTAM installation-wide exit routines:

– Command verification exit (ISTCMMND)

– Configuration services XID exit (ISTEXCCS)
with description of IBM-supplied default exit

– Directory services management exit
(ISTEXCDM)

– Generic resource resolution exit (ISTEXCGR)

– Performance monitor exit (ISTEXCPM)

– SDDLU exit (ISTEXCSD) with description of
IBM-supplied default exit

– Session accounting exit (ISTAUCAG)

– Session authorization exit (ISTAUCAT)

– Session management exit (ISTEXCAA) with
example

– TPRINT processing exit (ISTRAEUE)

248 IP IMS Sockets Guide

– USERVAR exit (ISTEXCUV) with description of
IBM-supplied default exit

– Virtual route pacing window size calculation exit
(ISTPUCWC)

– Virtual route selection exit (ISTEXCVR).

OS/390 eNetwork Communications Server: IP Network
Print Facility (SC31-8522). This book is for system pro-
grammers and network administrators who need to
prepare their network to route VTAM, JES2, or JES3
printer output to remote printers using TCP/IP.

Writing Application Programs

OS/390 eNetwork Communications Server: IP API
Guide (SC31-8516). This book describes the syntax and
semantics of program source code necessary to write
your own application programming interface (API) into
TCP/IP. You can use this interface as the communi-
cation base for writing your own client or server applica-
tion. You can also use this book to adapt your existing
applications to communicate with each other using
sockets over TCP/IP.

OS/390 eNetwork Communications Server: IP CICS
Sockets Guide (SC31-8521). This book is for people
who want to set up, write application programs for, and
diagnose problems with the socket interface for CICS
using TCP/IP for MVS.

OS/390 eNetwork Communications Server: IP IMS
Sockets Guide (SC31-8546). This book is for program-
mers who want application programs that use the IMS
TCP/IP application development services provided by
IBM TCP/IP for MVS.

OS/390 eNetwork Communications Server: IP Program-
mer's Reference (SC31-8515). This book describes the
syntax and semantics of a set of high-level application
functions that you can use to program your own appli-
cations in a TCP/IP environment. These functions
provide support for application facilities, such as user
authentication, distributed databases, distributed proc-
essing, network management, and device sharing.
Familiarity with the MVS operating system, TCP/IP pro-
tocols, and IBM Time Sharing Option (TSO) is recom-
mended.

OS/390 eNetwork Communications Server: SNA Pro-
gramming (SC31-8573). This book describes how to
use VTAM macroinstructions to send data to and
receive data from (1) a terminal in either the same or a
different domain, or (2) another application program in
either the same or a different domain. The information
includes:

 ¹ API concepts
 – Cryptography

– RUs and exchanges

– Session establishment and termination
¹ BIND area format
¹ Communication Network Management Interface
¹ Dictionary of VTAM macroinstructions
¹ OPEN or CLOSE errors
¹ Operating system differences
¹ Program Operator Coding requirements
¹ RAPI DSECTs and control block mappings (ACB,

ADSP, BLENT, CV29, EXLST, MTS, NIB, NIB
DEVCHAR, NIB PROC, RH, RPL,
RPL RTNCD=FDB2=FDBK=DSECT)

¹ RAPI global variables
 ¹ Vector lists
 ¹ RPL-based macroinstructions
¹ RPL RTNCD,FDB2 codes
¹ User exit routines.

OS/390 eNetwork Communications Server: SNA Pro-
grammers LU 6.2 Guide (SC31-8581). This book
describes how to use the VTAM LU 6.2 application pro-
gramming interface for host application programs. This
book applies to programs that use only LU 6.2 sessions
or that use LU 6.2 sessions along with other session
types. (Only LU 6.2 sessions are covered in this book.)
The information includes:

¹ VTAM's implementation of the LU 6.2 architecture
¹ Design considerations for LU 6.2 application pro-

grams
¹ Negotiating session limits with partner LUs
¹ BIND image and response
¹ Allocating and deallocating conversations
¹ FMH-5 and PIP data

 ¹ Conversation states
¹ Sending and receiving data
¹ Using high performance data transfer (HPDT)
¹ Session- and conversation-level security and data

encryption
 ¹ Register usage
¹ Sync point services
¹ LU 6.2 global variables

 ¹ Vector lists
¹ Sense codes for FMH-7 and UNBIND

 ¹ RCPRI,RCSEC codes
¹ User exit routines.

OS/390 eNetwork Communications Server: SNA Pro-
grammers LU 6.2 Reference (SC31-8568). This book
provides reference material for the VTAM LU 6.2 pro-
gramming interface for host application programs. The
information includes:

 ¹ APPCCMD macroinstructions
¹ Primary and secondary return codes (RCPRI,

RCSEC)
 ¹ DSECTs
¹ Examples of using VTAM's LU 6.2 API

 ¹ Register usage

OS/390 eNetwork Communications Server: CSM Guide
(SC31-8575). This book describes how applications use

 Bibliography 249

the communications storage manager. The information
includes:

¹ Creating and deleting buffer pools
¹ Obtaining and freeing buffers
¹ Return codes and reason codes

 ¹ DSECTs

OS/390 eNetwork Communications Server: CMIP Ser-
vices and Topology Agent Guide (SC31-8576). This
book describes the Common Management Information
Protocol (CMIP) programming interface for application
programmers to use in coding CMIP application pro-
grams. The book provides guide and reference informa-
tion about CMIP services and the VTAM topology agent
and includes the following topics:

¹ Management information base (MIB) API functions
¹ CMIP message strings
¹ Special CMIP message strings
¹ Read queue exit routine
¹ Sample CMIP application program
¹ VTAM resources as CMIP objects
¹ Naming conventions for objects
¹ VTAM resources and OSI states
¹ Attributes to object cross-reference
¹ ASN.1 syntax for CMIP messages
¹ GDMO table format
¹ ACYAPHDH header file.

 Diagnosis

OS/390 eNetwork Communications Server: IP Diagnosis
(SC31-8521). This book explains how to diagnose
TCP/IP problems and how to determine whether a spe-
cific problem is in the TCP/IP product code. It explains
how to gather information for and describe problems to
the IBM Software Support Center.

OS/390 eNetwork Communications Server: SNA Diag-
nosis (LY43-0079). This book helps you identify a
VTAM problem, classify it, and collect information about
it before you call the IBM Support Center. The informa-
tion collected includes traces, dumps, and other
problem documentation. The information includes:

¹ Command syntax for running traces and collecting
and analyzing dumps

 ¹ VIT entries
¹ Procedures for collecting documentation (VTAM,

TSO)
¹ VTAM internal trace and VIT analysis tool

 ¹ FFST Probes
 ¹ Channel programs
 ¹ Flow diagrams
¹ Procedures for locating buffer pools
¹ CPCB operation codes
¹ Storage and control block ID codes
¹ Offset names and locations for VTAM buffer pools.

OS/390 eNetwork Communications Server: Data Areas
Volume 1 (LY43-0111). This book describes VTAM data
areas and can be used to read a VTAM dump. It is
intended for IBM programming service representatives
and customer personnel who are diagnosing problems
with VTAM.

OS/390 eNetwork Communications Server: Data Areas
Volume 2 (LY43-0112). This book describes VTAM data
areas and can be used to read a VTAM dump. It is
intended for IBM programming service representatives
and customer personnel who are diagnosing problems
with VTAM.

Messages and Codes

OS/390 eNetwork Communications Server: SNA Mes-
sages (SC31-8569). This book describes the following
types of messages and other associated information:

 ¹ Messages:

– ELM messages for logon manager
– IKT messages for TSO/VTAM
– IST messages for VTAM network operators
– ISU messages for sockets-over-SNA
– IVT messages for the communications storage

manager
 – IUT messages
 – USS messages

¹ Other information that displays in VTAM messages:

– Command and RU types in VTAM messages

– Node and ID types in VTAM messages

¹ Supplemental message-related information:

– Message additions, deletions, and changes

– Message flooding prevention

– Message groups and subgroups

– Message routing and suppression including
descriptor codes, routing codes, and sup-
pression levels for ELM, IKT, IST, and ISU mes-
sages

– Message text and description formats

– Message text of MSGLVL option messages
including general information on the MSGLVL
option

– Message text of all VTAM network operator
messages including variable field lengths

OS/390 eNetwork Communications Server: IP Mes-
sages Volume 1 (SC31-8517). This volume contains
TCP/IP messages beginning with EZA.

OS/390 eNetwork Communications Server: IP Mes-
sages Volume 2 (SC31-8570). This volume contains
TCP/IP messages beginning with EZB.

250 IP IMS Sockets Guide

OS/390 eNetwork Communications Server: IP Mes-
sages Volume 3 (SC31-8674). This volume contains
TCP/IP messages beginning with EZY, EZZ, and SNM.

OS/390 eNetwork Communications Server: IP and SNA
Codes (SC31-8571). This book describes codes and
other information that display in CS/390 messages:

¹ Sense codes including VTAM sense code hints,
SNA sense field values for RPL-based macroin-
structions, and 3270 SNA and non-SNA device
sense fields

¹ Return codes for macroinstructions including ACB
OPEN and CLOSE macroinstruction error fields,
RTNCD-FDB2 return code combinations, and LU
6.2 RCPRI-RCSEC return codes

¹ Data link control (DLC) status codes

¹ Status codes including resource status and session
state codes

¹ Wait state event codes and IDs

 ¹ Abend codes

¹ ATM network-generated cause and diagnostic
codes

APPC Application Suite

OS/390 eNetwork Communications Server: APPC Appli-
cation Suite User's Guide (GC31-8619). This book doc-
uments the end-user interface (concepts, commands,
and messages) for the AFTP, ANAME, and APING
facilities of the APPC application suite. Although its
primary audience is the end user, administrators and
application programmers may also find it useful.

OS/390 eNetwork Communications Server: APPC Appli-
cation Suite Administration (SC31-8620). This book con-
tains the information that administrators need to
configure the APPC application suite and to manage the
APING, ANAME, AFTP, and A3270 servers.

OS/390 eNetwork Communications Server: APPC Appli-
cation Suite Programming (SC31-8621). This book pro-
vides the information application programmers need to
add the functions of the AFTP and ANAME APIs to their
application programs.

 Multiprotocol Transport
Networking (MPTN) Architecture
Publications

Following are selected publications for MPTN:

Networking Blueprint Executive Overview (GC31-7057)

Multiprotocol Transport Networking:
 Technical Overview (GC31-7073)

Multiprotocol Transport Networking:
 Formats (GC31-7074)

 OS/390 Publications

For information on OS/390 and other products, refer to
OS/390 Information Roadmap (GC28-1727-03).

 Bibliography 251

252 IP IMS Sockets Guide

 Index

A
accept 78
ACCEPT (call) 115
active sockets 107
active sockets queue 84
ADDRSPC parameter 106
ADDRSPCPFX parameter 107
alternate PCB 80
APPC 4
application data 80, 84
application data, explicit mode

data translation 90
end-of-message indicator 90
format 90
network byte order 90

application data, explicit-mode
format 97, 98
protocol 97, 98
translation 97, 98

application data, implicit-mode
data translation 92, 100
end-of-message 100
end-of-message indicator 92
format 92, 100

Application types
3270 3
client-server 3

ASCII to EBCDIC translation 90
ASMADLI 102
Assist module

role of 77
tradeoffs 77
use of IMS message queue 77

B
BACKLOG parameter 107
BACKLOG parameter on call interface, LISTEN

call 143
backlog queue 84
backlog queue, length 107
bb status code 100, 102
Berkley Sockets

BSD 4.3 5
big-endian 90
BIND 78
BIND (call) 117
bit-lngth on call interface, on EZACIC06

call 174
bit-mask on call interface, on EZACIC06 call 174

BMP 106
BUF parameter on call socket interface 113

on GETIBMOPT 129
on READ 144
on RECV 147
on RECVFROM 148
on SEND 159
on SENDTO 163
on WRITE 170

buffer full 32, 94

C
C language 5

list of calls 24
CADLI 102
CALL Instruction Interface for Assembler, PL/1, and

COBOL 113
Call Instructions for Assembler, PL/1, and COBOL

Programs 113
ACCEPT 115
BIND 117
CLOSE 118
CONNECT 119
EZACIC04 172
EZACIC05 173
EZACIC06 173
EZACIC08 174
FCNTL 121
GETCLIENTID 122
GETHOSTBYADDR 123
GETHOSTBYNAME 125
GETHOSTID 127
GETHOSTNAME 127
GETIBMOPT 128
GETPEERNAME 130
GETSOCKNAME 131
GETSOCKOPT 132
GIVESOCKET 135
INITAPI 137
IOCTL 139
LISTEN 142
READ 143
READV 144
RECV 146
RECVFROM 147
RECVMSG 149
SELECT 152
SELECTEX 156
SENDMSG 159
SENDTO 162
SETSOCKOPT 164

 Copyright IBM Corp. 1994, 1997 253

Call Instructions for Assembler, PL/1, and COBOL
Programs (continued)

SHUTDOWN 166
SOCKET 167
TAKESOCKET 168
TERMAPI 169
WRITE 170
WRITEV 171

call sequence, explicit-mode client 90
CBLADLI 102
CH-MASK parameter on call interface, on

EZACIC06 174
child server 14
CHNG 80
client

defined 29, 89
explicit-mode 89
logic flow 29, 89

client call sequence, implicit-mode 91
CLIENT parameter on call socket interface 113

on GETCLIENTID 123
on GIVESOCKET 136
on TAKESOCKET 169

client-server 3
client/server processing 8
COBOL language

list of calls 24
codes, RSM reason 32, 94
COMMAND parameter on call interface, IOCTL

call 140
COMMAND parameter on call socket interface 113

on EZACIC06 174
on FCNTL 121
on GETIBMOPT 129

COMMIT 97, 98
commit database updates 80
commit, explicit-mode 89
complete-status message 34, 95
concurrent server

defined 14
illustrated 13, 14

configuration file 106
configuring IMS TCP/IP 111
connection, how established 78
conversation, TCP/IP 78
CSMOKY 34, 93, 95
CSMOKY message 91

D
data translation,

socket interface 172
data translation

explicit-mode 90
data translation, socket interface 113

ASCII to EBCDIC 173

data translation, socket interface (continued)
bit-mask to character 173
character to bit-mask 173
EBCDIC to ASCII 172

data, application 80, 84
database calls 80
database updates, commit 80
DataLen 108
DataType 108

E
EBCDIC to ASCII translation 90
ERETMSK parameter on call interface, on

SELECT 155
ERRNO parameter on call socket interface 113

on GETCLIENTID 123
on GETHOSTNMAE 128
on GETPEERNAME 131
on GETSOCKNAME 132
on GETSOCKOPT 135
on GIVESOCKET 137
on SETSOCKOPT 166
on TAKESOCKET 169
on ACCEPT 116
on BIND 118
on CLOSE 119
on CONNECT 121
on FCNTL 122
on GETIBMOPT 130
on INITAPI 138
on IOCTL 142
on LISTEN 143
on READ 144
on READV 145
on RECV 147
on RECVFROM 149
on RECVMSG 152
on SELECT 155
on SELECTEX 157
on SEND 159
on SENDMSG 162
on SENDTO 163
on SHUTDOWN 167
on SOCKET 168
on WRITE 170
on WRITEV 172

ESDNMASK parameter on call interface, on
SELECT 155

EWOULDBLOCK error return, call interface calls
RECV 146
RECVFROM 147

explicit-mode 5
explicit-mode client

application data format 90
call sequence 90

254 IP IMS Sockets Guide

explicit-mode client (continued)
data format 90
data translation 90
network byte order 90

explicit-mode server
application data 97
call sequence 97
I/O PCB 97
PL/I programming 97
TIM 97
transaction-initiation message 97

EZACIC04, call interface, EBCDIC to ASCII trans-
lation 172

EZACIC05, call interface, ASCII to EBCDIC
translation 173

EZACIC06 21
EZACIC06, call interface, bit-mask trans-

lation 173
EZACIC08, HOSTENT structure interpreter utility 174

F
FCNTL (call) 121
FLAGS parameter on call socket interface 113

on RECV 146
on RECVFROM 148
on RECVMSG 151
on SEND 158
on SENDMSG 161
on SENDTO 163

FNDELAY flag on call interface, on FCNTL 121

G
GETCLIENTID (call) 122
GETHOSTBYADDR (call) 123
GETHOSTBYNAME (call) 125
GETHOSTID (call) 127
GETHOSTNAME (call) 127
GETIBMOPT (call) 128
GETPEERNAME (call) 130
GETSOCKNAME (call) 131
GETSOCKOPT (call) 132
GIVESOCKET 80
GIVESOCKET (call) 135

H
hlq.PROFILE.TCPIP data set 109
hlq.TCPIP.DATA data set 110
HOSTADDR parameter on call interface, on

GETHOSTBYADD 124
HOSTENT parameter on call socket interface

on GETHOSTBYNAME 126
on GETHOSTBYADDR 124

HOSTENT structure interpreter parameters, on
EZACIC08 176

I
I/O Area size 102
I/O PCB in explicit-mode server 99
IDENT parameter on call interface, INITAPI call 138
implicit mode 5
implicit-mode

client 91
client call sequence 91
client logic flow 91
complete status message 91
CSM 91
data stream 91
transaction-request message 91
TRM 91

implicit-mode client
application data stream 93
application data, format 93
call sequence 93
data format 93
data translation 93
end-of-message indicator 93
logic flow 93

implicit-mode server
application data 100
Assist module 100
call sequence 100
I/O PCB 100
PL/I programming 100
programming 100

IMS Assist Module 5
IMS error 32, 94
IMS Listener 5

role of 77
use of IMS message queue 77

IMS TCP/IP OTMA Connection server 4, 29
IMS-request message 29, 30
IMSLSECX, Listener security exit name 108
IN-BUFFER parameter on call interface, EZACIC05

call 173
initapi 97, 99
INITAPI(call) 137
INQY 80
internets, TCP/IP 8
IOCTL (call) 139
IOV parameter on call socket interface 113

on READV 145
on WRITEV 171

IOVCNT parameter on call socket interface 113
on READV 145
on RECVMSG 151
on SENDMSG 161
on WRITEV 171

 Index 255

IP protocol 9
IpAddr 108
IRM 29, 30
IRMId 30
IRMlen 30
IRMRsv 30
IRMTrnCod 30
IRMUsrDat 30
ISRT 100
iterative server

defined 14
illustrated 14

L
length of backlog queue 107
LENGTH parameter on call socket interface 113

on EZACIC04 172
on EZACIC05 173

LISTEN 78
LISTEN (call) 142
Listener call sequence 85
Listener configuration file

LISTENER statement 106
TCPIP statement 106
TRANSACTION statement 106

Listener ReasnCode 108
Listener RetnCode 108
Listener startup parameters 106
Listener statement 107
LISTNR 99
little-endian 90
LTERM name 103
LU 6.2 4

M
MAXACTSKT 84
MAXACTSKT parameter 107
MAXSNO parameter on call interface, INITAPI

call 138
MAXSOC parameter on call socket interface 113

on INITAPI 138
on SELECT 154
on SELECTEX 156

MAXTRANS parameter 107
Message Format Services 3
Message format services (MFS) 84
message queue 77, 78, 80
message queue, use of 84
messages

complete-status message 34, 95
MFS 3
MODE=SNGL 97
MSG parameter on call socket interface 113

on RECVMSG 151

MSG parameter on call socket interface (continued)
on SENDMSG 161

multiple connection requests 84

N
NAME parameter on call socket interface

on GETHOSTBYNAME 125
on GETHOSTNAME 128
on GETPEERNAME 131
on GETSOCKNAME 132
on ACCEPT 116
on BIND 117
on CONNECT 120
on RECVFROM 148
on SENDTO 163

NAMELEN parameter on call socket interface
on GETHOSTBYNAME 125
on GETHOSTNAME 127

NBYTE parameter on call socket interface 113
on READ 144
on RECV 147
on RECVFROM 148
on SEND 159
on SENDTO 163
on WRITE 170

network byte order 90

O
OPTLEN parameter on call socket interface

on GETSOCKOPT 135
on SETSOCKOPT 166

OPTNAME parameter on call socket interface 113
on GETSOCKOPT 133
on SETSOCKOPT 164

OPTVAL parameter on call socket interface 113
on GETSOCKOPT 134
on SETSOCKOPT 165

OSI 9
output area size 102
Overview 4

P
pending activity 20
pending exception 21
pending read 21
PL/I coding 95
PL/I programs, required statement 114
PLIADLI 102
Port 108
port numbers

reserving port numbers 109
PORT parameter 107

256 IP IMS Sockets Guide

ports
compared with sockets 12
reserving port numbers 109

program variable definitions, call interface 113
assembler definition 114
COBOL PIC 114
PL/I declare 114
VS COBOL II PIC 114

PROTO parameter on call interface, on
SOCKET 168

PURG call 102

Q
QC status code 100, 102
QD status code 100, 102

R
READ 80
READ (call) 143
READV (call) 144
ReasnCode, Listener 108
reason codes 32, 94
RECV (call) 146
RECVFROM (call) 147
RECVMSG (call) 149
REQARG and RETARG parameter on call socket inter-

face 113
on FCNTL 122
on IOCTL 141

REQSTS 93
Request-status message 89, 93

for otma 29
requirements for IMS TCP/IP 23
RETARG parameter on call interface, on

IOCTL 142
RETCODE parameter on call socket interface 113

on EZACIC06 174
on GETCLIENTID 123
on GETHOSTBYNAME 126
on GETHOSTID 127
on GETHOSTNAME 128
on GETPEERNAME 131
on GETSOCKNAME 132
on GETSOCKOPT 135
on GIVESOCKET 137
on RECVFROM 149
on SETSOCKOPT 166
on SHUTDOWN 167
on TAKESOCKET 169
on ACCEPT 116
on BIND 118
on CLOSE 119
on CONNECT 121
on FCNTL 122

RETCODE parameter on call socket interface (con-
tinued)

on GETHOSTBYADDR 124
on GETIBMOPT 130
on INITAPI 138
on IOCTL 142
on LISTEN 143
on READ 144
on READV 145
on RECV 147
on RECVMSG 152
on SELECT 156
on SELECTEX 157
on SEND 159
on SENDMSG 162
on SENDTO 163
on SOCKET 168
on WRITE 170
on WRITEV 172

RetnCode, Listener 108
return codes

call interface 115
return codes, I/O PCB

bb 103
EA 103
EB 103
EC 103
QC 103
QD 103
ZZ 103

ROLB call 103
RRETMSK parameter on call interface, on

SELECT 155
RSM 89

for IMS TCP/IP OTMA Connection server 29
RSM reason codes 32, 94
RSMId 32, 94
RSMLen 32, 94
RSMRetCod 32, 94
RSMRsnCod 32, 94
RSMRsv 32, 94
RSNDMSK parameter on call interface, on

SELECT 155

S
S, defines socket descriptor on socket interface

on BIND 117
on CLOSE 119
on FCNTL 121
on IOCTL 139
on READ 144
on RECV 146
on WRITE 170
on ACCEPT 116
on CONNECT 120

 Index 257

S, defines socket descriptor on socket interface (con-
tinued)

on GETPEERNAME 131
on GETSOCKNAME 132
on GETSOCKOPT 133
on GIVESOCKET 136
on LISTEN 143
on READV 145
on RECVFROM 148
on RECVMSG 151
on SEND 158
on SENDMSG 161
on SENDTO 163
on SETSOCKOPT 164
on SHUTDOWN 166
on WRITEV 171

security exit 78
security exit reason codes 32, 94
security exit, data passed by Listener 108
security exit, Listener 108
security exit, return codes 108
SELECT (call) 152
select mask 20
SELECTEX (call) 156
SEND (call) 158
SENDMSG (call) 159
SENDTO (call) 162
server call sequence, explicit-mode 97
server programming, logic flow 97
server, defined 89
server, explicit mode

see explicit mode server 97
SETSOCKOPT (call) 164
SHUTDOWN (call) 166
SNA 4
SNA protocols

compared with SNA 8
compared with TCP/IP 8

SOCKET (call) 167
Socket interface 5
sockets 4

compared with ports 12
introduction 9

Sockets Extended API 10
SOCRECV parameter on call interface,

TAKESOCKET call 169
SOCTYPE parameter on call interface, on

SOCKET 167
SUBTASK parameter on call interface, INITAPI

call 138
SYNC 80
syntax diagram, reading 239
System Return codes 219

T
takeSOCKET 80, 97, 99
TAKESOCKET (call) 168
TCP protocol 9
TCP/IP for MVS 23
TCP/IP for MVS, modifying data sets

modifying data sets 109
TCP/IP protocols 9
TCPIP statement 106
TCPIPJOBNAME user id 110
TELNET 3
TERMAPI (call) 169
TIM 80, 99
TIMDataType 99
TIMEOUT parameter on call interface, on

SELECT 154
TIMEOUT parameter on call socket interface 113

on SELECTEX 156
TIMId 99
TIMLen 99
TIMListTaskID 97
TIMLstAddrSpc 97, 99
TIMLstTaskID 99
TIMRsv 99
TIMSktDesc 97, 99
TIMSrvAddrSpc 97, 99
TIMSrvTaskID 97, 99
TIMTCPAddrSpc 97, 99
TN3270 3
TOKEN parameter on call interface, on

EZACIC06 174
TRANCODE 77, 78
Transaction code 77
transaction name, IMS 107
transaction not defined 32, 94
transaction request message 78
TRANSACTION statement 107
transaction unavailable 32, 94
transaction verification 108
Transaction-initiation message 99
Transaction-request message 89, 94
TransNam 108
TRM 78, 89, 94
TRM bad format 32, 94
TRMId 94
TRMlen 94
TRMRsv 94
TRMTrnCod 94
TRMUsrDat 94

U
UDP protocol 9
updates, database commit 80

258 IP IMS Sockets Guide

Userdata 108
utility programs 113, 172

 EZACIC04 172
EZACIC05 173
EZACIC06 173
EZACIC08 174

V
verification, transaction 108
VTAM 4

W
WRETMSK parameter on call interface, on

SELECT 155
WRITE (call) 170
write() 80, 84
WRITEV (call) 171
WSNDMSK parameter on call interface, on

SELECT 155

Z
ZZ status code 102

 Index 259

Communicating Your Comments to IBM

OS/390 eNetwork Communications Server
IP IMS Sockets Guide
Version 2 Release 5

Publication No. SC31-8519-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

1-800-227-5088(US and Canada)

¹ If you prefer to send comments electronically, use this network ID:

 – USIB2HPD@VNET.IBM.COM
– USIB2HPD at IBMMAIL

Make sure to include the following in your note:

¹ Title and publication number of this book
¹ Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

OS/390 eNetwork Communications Server
IP IMS Sockets Guide
Version 2 Release 5

Publication No. SC31-8519-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC31-8519-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department CGMD / Bldg 500
P.O. Box 12195
Research Triangle Park, NC 27709-9990

Fold and Tape Please do not staple Fold and Tape

SC31-8519-00

ÉÂÔÙ

File Number: S390-50
Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8519-00

Spine information:

ÉÂÔ OS/390 eNetwork Communications Server IP IMS Sockets Guide Version 2 Release 5

